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ABSTRACT

(Distribution Limitation Statement A)

The objectives of this research were to determine the theoretical and experi-
mental load-deformation response and buckling loads of reticulated shells and
to study the growth of imperfections in reticulated shell models. Two types of
theoretical analyses (elastic material behavior was assumed) of reticulated
shells were conducted to predict load-deformation relaticnships. A "split
rigidit," concept was used in which equivalent membrane and pending thicknesses
were calculated. The second technique was a space frame znalysis using the
NASTRAN computer code. 7Three spherical reticulated shell models (two brass and
one plastic) were fabricated and tested experimentally. Results of the study
indicated that the NASTRAN code predicted the deflection patterns well and
identified the final buckle locations. The assumption of elastic material
behavior precluded predicting the exact deflection magnitudes due to material
yielding. Buckling loads were closely predicted using a theory by Buchert.
This theory included the effects of large deflections and employed the split
rigidity approach. Plasticity reduction factors were applied to the predicted
results to account for material nonlinearities.
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CHAPTER I {

INTRODUCTION

1.1 GENERAL

Recent trends in architectural and structural design hLave led
to widespread use of shell-type structures. Their aesthetic appeal
and the minimum requirement for internal supporting members has
popuiarized their use in sports stadia, auditoriums, shopping malls,
etc. Earlier shells and domes were primarily continuous structures
ol reinforced concrete, with the material providing structural
strength and serving as covering for the structures.

More rezently, however, certain advantages over continuous
shells and domes have been attained through the use of reticulated
shells. These structures are formed by approximating shell
surface with a framework of relatively short linear structural
members. A membrane-type covering is attached to provide thermal
and acoustic barriers and for protection against environmental
effects. The const.uccion problems associated with scaffolding
and formwork arz thereby reduced or eliminated, and thz aesthetic

and practical advantages of a variety of covering materials can be

incorporated into the design. Spurred by the popularity of this
type of stiructure and by several spectacular faiiures of dome-

i j type buildings, a demand has be2n created for improved analysis
and design techniques. The large siie of many of these

r- buildings has presented design problems entirely ne:r to etructural

3

engineers. The preponderance of the theoretical work currently

-———— -
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available in the liteidture has logically concentrated on continuous
shells. With the advent of the high—speed digital computer, however,
recent publications have presented structural analysis techniques and
buckling theories for reticulated domes. The necessary experimental
work on which to formulate and verify analytical techniques is,
vnfortunately, extremely limited. Many continuous shell theories
have been modified to the case of reticulated domes without an
adequate data base to justify thelr use.

The purpose of this paper was to study the load-deflection
relationships and buckling characteristics of several model
reticulated shells. The experimental data thus generated can
hopefully be used to investigate the adequacy of current theoretical
procedures.

1.2 PREVIOUS RESEARCH

1.2,1 Analytical Work. Analytical techniques using stiffness

and flexibility methods have been formulated in numerous recent

studies (1)2’3,4’5’6,7’8)

of reticulated domes and other space frames.
Two of the more recent computer codes developed and in wide practical
use are NASTRAN(7) and FRAN(8). NASTRAN (acronym for NASA STructural
ANalysis) was developed during the advent of the space program under

the direction of the National Aeronautics and Space Administration. This
code employs the stiffness method of analysis and will allow linear
elastic analyses of space frameworks and pumerous other structural

assemblies to be performed. Output consists of grid point displacements,

applied loads at grid points, forces at constrained grid points,

element forces, and element stresses. FRAN is also a linear elastic code for

e m—
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complex structures. Numerous external loading conditions can be i
applied and joint connection rigidities can bc varied. Structures

with up to 15,000 members and 2,000 joints can be analyzed.

Substructuring a2 large problem to aid in determining the stiffness

matrix inverse and to simplify the booskeeping procedures is also
possible in FRAN.

(9,10,11,12) of shells and domes were

Continuum analyses
formulated earlier. Only rzecently, however, have thare been attempts
to modify these elastic continuum theories to the analysis and design

(13) prasented a shell

of reticulated domes. A paper by Wright
analogy in which member axial forces were related to shell membrane
forces. Elastic constants and effective thicknesses were given for
homogeneous isotropic and anisotropic continuous shells which were

. equivalent to various reticulated shell grids. Equivalent meant
that wheu a reticulated shell was analyzed as a continuum, the
continuum elastic properties were assumed such that the load-
deformation behavior was very nearly that of the actual framework.

’ Wright (14 also presented a continuum analysis for double-layer space

}‘* frame shells. A double-layer shell consists of two reticulated shell

} grids separated by an assemblage of members having a shear-carrying

be capacity. The elastic constants of an anisotropic homogeneous

i continuum possessing the same deformational characteristics were given.

} , Member forces were found from the stress resultants of the continuum.

Renard (13) studied the relationship between lattice (reticulated) and

k- . continuous structures and included grid systems with both asymmetrical

b and symmetrical patterns. Equilateral triangular, isosceles triangular,




and square lattices were studied and their equivalent continuum
elastic constants were precented. The study included several direct
comparisons with Wright's work. Mitchell (16) presented a shell
analogy for a framed dome and made comparisons with a relaxation
solution. The Dome of Discovery in Britain was studied as a model.
Lane 17) compared a truss solution, Wright's method, and a diamond-
element method to determine bar forces in 2 triaron network. He
found that the finer the network, the better the agreement between
“he truss solution and the shell analogy. Others (18,19) have made
similar studies.

Buckling theories as applied to reticulated frameworks have been
developed primarily within the past decade. Buchert (20) has
reported experimental results on a series of stiffened plastic shells
to substantiate his theoretical development. The test shells
consisted of a continuous plastic outer shell fastened to an inner
"stiffening" shell having a reticulated member pattern. The theory
was developed by calculating the deflections during loading and prior
to buckling using a large deflection stablility approach. The tests
agreed well with the theory and confirmed that the shell edges could
be stiffened and relatively high buckling loads obtained by increasing
the meridional curvature near the edge of the shell. Buchert (21) also
developed general buckling equations for doubly curved latticed
structures. Expressions for the effect of edge conditionms,
deviatiuns from a perfect sphere, and material yield strength were
discussed. Lind (22) did extensive work on local buckling and snap-

through instability for regular triangulated single layer domes.

a——
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Buchert(23) derived plasticity reduction factors and conducted
model tests to verify his buckling theories which included the
effects of plasticity and large deflections. McCutcheon and

Dickie (24)

used energy considerations to develop buckling criteria
for large dome frameworks. Experimental investigations were conducted
using a portion of a dome. Tezcan and Ovunc (25) ysed an iteration
procedure to determine buckling loads of space structures and
accounted for nonlinear behavior. The matrix approach was used with
the additicn of considering geometry changes. Wright ax
formulated criteria for the buckling ot individual members and a
criteria was proposed for snap-through buckling. A criteria was
proposed for overall instability of reticulated shells based upon
the use of equivalent continuum thicknesses and elastic constants.
The Bucharest Dome collapse was predicted and estimates of buckling

loads for other large reticulated structures were given.

1.2.2 Experimental Studies. In addition to the experimental
(26,27,28,29,30) have

work meuntioned above, other investigators
performed much needed experimental studies. Makowski aud Pippard (27)
performed experiments on a btraced (reticulated) dome similar to the
Dome of Discovery. Models of 1/8-inch diameter steel wire were built
and Maxwell's Reciprocal Theorem was used to calculate displacements.
The experimental results coméared well with the theoretical
predictions. Bayley (29) reported experimental work on a model dome
witn a three-way framing system, and compared the results with
theoretical predictions. A 1/15th scale of a 143—foot diameter

prototype was investigated. Uniform, half~uniform, and apex loading




cases were investigated. The effect of introducing limited joint
and support rigidity was discussed. Litle (30) documented work on

the methods and problems of model testing and studied the use of

model testing in the design of full-scale structures. ;

1.3 OBJECT AND SCOPE

= yasma

An exzmination of the above literature revealgd a lack of
theoretical and experimental information on the load-deformation ;
relationships of a reticulated dome from initial loading to the
final buckled configél%tion. Also, several theories wers postulated
that refriculated shells can be analyzed, designed, and will behave
as continuous domes. The lack of an adequate experimentzl data base
to check these theories and to identify the causes uf buckling in
a reticulated dome thus initiated this study.

Two theoretical analyses to predict the load-deflection
response of reticulated shells were employed, namely the split
rigidity approach and the NASTRAN stiffness method. These analyses .
were based on the assumption of linear elastic material behavior.

The NASTRAN predictions, however, included the effects of geometric

nonlinearities. An experimental program to check these predictions

was performed. Three model spherical reticulated domes were

fabricated, one of plastic and two of brass. Hydrostatic water

pressure loading was applied and radial deflections under each were

measured using a highly accurate sensing device. The models were

incrementally loaded to their respective buckling loads, and the .
buckling load was compared with the predictions of several current

buckling theories. A least-squares curve-fitting technique was




developed to reduce the experimental deflection data. Detailed

: comparisons between theoretical and experimental deflections were

- o 4

made by comparing contour plots of the deflected shape and by
’ comparing deflections along selected reference lines through the

location of the final buckle. No stress or strain measurements were

made on the models to check stresses.
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CHAPTER II !
THEORY AND ANALYSIS )
) |
The theoretical approach to the objectives of this study was '
a two-pronged effort: 1) to predict the deflections of a spherical }

reticulated shell as it deforwed under load, and 2) to use these
deflections to predict the buckling load of the shell. Two types of
deflection analyses, the split rigidity approach and a conventional
space frame aualysis, are described irn this section. A detailed
theoretical development of each of these theories is presented in the
appendices. A summary of these theories together with their appli-
cation to several experimental shell models is given here. Buckling
theories of reticulated shells are then presented and applied to the

test models. "

2.1 THE SPLIT RIGIDITY METHOD

2.1.1 Theory. A relatively new app.oach to predicting the

deflections of reticulated shells has been the split rigidity t

technique.(zo)

This concept introduced the idea of an equivalent

continuum membrane thickness t, to account for membrane action in the :
shell, and an equivalent continuum bending thickness tb to represent

bending behavior. By considering different rigidities for membrane

and bending action, this "split rigidity" theory took advantage of the

available and relatively simple closed-form shell equations, provided

the following basic assumptions wer- met:




(1) The shell material behaved in a linear elastic manner.

(2) The member grid pattern was a relatively uniform square

grid such that single constant equivalent thicknesses could te i
established in both membrane and bending behavior. For this particular
study, the theory was also restricted to a spherical reticulated shell
subjected to a uniform radial load.

Upon writing three basic equilibrium equations for the spherical
shell element in Figure 2.1 and making appropriate substitutions for
the forces and moments therein, the problem was reduced to the

solution of two ordinary differential equations:

e
9 = -EtV 2.1
d2y R*Q,
-—z - 202
d¢ Db
where Q¢ = the meridional shear force
E = Young's modulus for the material
V = the angle of rotation of a tangent to a meridian
R = the spherical shell radius.
The flexural rigidity quantity Db was defined as )
Et. 3
D = —B 2.3
b 12(1-v*)

where v is Poisson's Ratio. Equations 2.1 to 2.3 provided for both !
bending and membrane behavior, thus originating the term "split

rigidity."
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figure 2,1 Free-Body Diagram of a Shell Eiement
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By eliminating Q¢ from the abeve equations z singie fourth
ordrr differercial equatien resulted.
5
SV 4 w'v = o0 2.4
ag
from
RCP'°du9ed copY-
whers «* = 3R*(1 - vz)tm best available
———
b
. . s (31) :
Equation 2.4 is known as the Geckeler equation when o tb = t,

After solving this efquation, expressions ifor the forcas N¢’

~

Na, Q¢ and the bending wmoments Mi and MG vere obtained. These internal
forces were the quantiticz required to determine the defiection w
notmal ic the shell surface (see Figure 2.2). The deflection w was

the final objective for this analytic zpproach, and due to beading
efiects alcne was

C - .
w = - —Ii—ezasm(.ca-i-y-%l)

K

[$%)

M, =R sing)—3n

Figure 2.2 Displacecment of a Point

e = s
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[
where the constant C and the phase angle Y were to be determined
from boundary conditionmns. .
The first boundary condition for deflection compatibility at ﬁ
1
the edge beam (also called the shell springing) gave ! .
] ?
3
0 r_ cosd
-2 [t_§+N¢ ——2S= _:_.)]
c = m S Ab m 2.6
) 3u rotm il
E [V2x sin (¥ - 377 +————Absin¢ sin (Y - 3)]
s
* where Ab was the edge beam cross—~sectional area and the subscript
{ "s" referred to the subscripted quantities evaluated at the shell
springing. By enforcing rotation compatibility at the edge beam a
second boundary condition resulted.
Csiny _ N, (-a cosd_ + b sind )
v ¢ S s
T S
2.7 .
/2 x D.C

+ ——[-sin (Y—-}H%s%';zsin CEEY

F where VT was the rotational flexibility of the edge beam. Other

geometric quantities in the above equation are shown in Figure 2.3.

Therefore, simultaneous solution of Equations 2.6 and 2.7 for

C and Y produced the desired normal deflection w which includes both

o

bending and membrane action:

w = —E%-[Ne-vucb]—-m—e"msm (n<a+y-%’1) 2.8 -
m V2 :
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Figure 2.3 Compatibility Restoring Forces

Only a summary of the split rigidity approach to the prediction
of deflections has been presented here. A complete development of the
theory is given in Appendix A.

2.1.2 Test Model Analysis. Application of the split rigidity

approach was made to three model reticulated domes. A summary of the

models and their geometries is presented in Table 2.1. Full detaijls

TABLE 2.1

Model Grid Spacing Material Member Cross--Section
B2 2" Brass H

Bl iR Brass H

PRET 2" Plastic Rectangular :

of the models and their fabrication are given in Chapter 3, and f
pertirent dimensions and other quantities necessary to solve Equation

2.8 are extracted therefrom. The analysis of each model follows.
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Model B2. Brass members with the dimensiors shown in Figure 2.4 {

024 in — t———

;

024in l
' T

Figure 2.4 Cross-Section of Brass H-Section

were used in this model. The member properties were:
Area = A = ,00785 in® '
Ixx = .0000165 in"
Iyy = .0000079 in"
A solid circular brass edge ring having a quarter-inch diameter cross-
section provided the following prcperties:
Area = .04309
I = .0001917
Young's modulus for the brass material was found to be 10 x 108 psi
(see part 4.1). A Poisson's Ratio of 0.33 was assumed. The B2 model .

radius (determined from a fit to experimental data as described in

part 3.5) was 16.17 inches, and an opening angle of 47° was used.



This opening angle, dJdesignated ¢S, was the angle between che vertical
axis of the shell and a line from the sphere center to the shell

springing, as shown later in Figure A.5. Using these kncwn quantities

it was found that K = 13.28 and Db = 82.51 1b-in. Roark(32)

edge beam rotational flexitility as R?*/EI, or .136 rad/lb for the B2

gave the

model. For a square grid approximation the membrane thickness t_ was
equal to A/d where d was the member spacing, and the bending thickness

t, was given by

b
3 (1211 - v®)
t, = /———d 2.9

Thus tm = ,00393 inches and tb = .0445 inches. Solving Equations 2.6
and 2.7 simultaneously for y and C gave 36° and -.00404 p,
respectively. Here p was the external uniform pressure load applied

radially. The final expression for combined membrane and bending

deflections for the B2 model was therefore
=K o
w = -.00348pe sin (ko - 81°) - .00223 p 2.10

The deflection was taken to be positive for an outward movement.
The pressure p wa. a positive quantity.

Bl Model. Corresponding quantities were computed for the Bl
test model. The same member cross-section and edge ring were used.

In this case R = 16.40 inches, Kk = 13.39, D, = 164.4 1lb-in, V =

b

.1403 rad/1b, tm = ,00785 inches, and tb = ,0560 inche.. From the
boundary condition equations, ¥ = 37° aad C = -.00235 p. The
combined membrane and bending deflection equation for the Bl model

was
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w = -.00204 pe "¢ sin (xa - §2°) - .00115 p 2.11

PRET Model. The plastic reticulated model shell had members
whose crnss section averaged ,214 inches in depth and one-half inch
in width. This gave section properties of A = .107 in? and I =
.000406 in". The edge beam condition for the PRET model is illustrated
in Figure 2.5. Due to this geometry a very flexible edge beam was
assumed, meaning ¥ = /4. Young's modulus for the plastic material
was measured to be 187,000 psi, and a Poisson's Ratio of 0.30 was
assumed. The PRET model radius was 15.60 inches, and its opening
anglc was 50.6°. The edge beam area was taken as .113 in?. Thus
< = 11.22, tm = ,0534 inches, t

b

irom Equation 2.5. For the PRET model the split rigidity equation for

= ,1307 inches, giving € = -.0403 p

the deflection w was

w = -,0396 pe "%

&

N
N\ )
Ngro/

sin (ko - %) - .00853 p 2.12

PRESSURE VESSEL
CLAMPING RING

ASSUMED PIN JOINT ‘éggiai"' 44’::§§E§E> <s

ASSUMED OUTER LIMIT
OF SHELL MATERIAL

Figure 2.5 PRET Model Edge Ring Geometry

N - T “
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The split rigidity equations given here are pletted in part
4.3 against experimental results.

2.2 ANALYSIS BY THE STIFFNESS METHOD

2.2.1 General. In addition to the split rigidity analysis

just described, a conventional space frame analysis was conducted
using the NASTRAN(7) (acronym for NASA STRuctural ANalysis) computer
code. Using the stiffness method a series of calculations was
conducted for static incremental loadings for two of the three test
shell models. The coordinate systems, grid point selection, members
and their cross-sectional and material properties, loads, and the
boundary conditions assumed in the NASTRAN analyses are described in
the following section.

The assumption of linear elastic material behavior was made in
the analyses described here. An accurate prediction of any potential
plastic behavior was therefore not expected either in this type of
analysis or in the previously described split rigidity technique.
Prediction of any nonlinear behavior due to geometric imperfections
was the objective of the NASTRAN analyses. It should be noted tt
no NASTRAN analyses were conducted for the Bl test model. Since
experimental instrumentation was not provided at each joint, the exact
determination of all the necessary joint coordinates was not possible
for this model.

2.2.2 The B2 Model. A full description of the B2 model and

its fabrication is presented in part 3.2.1. This model was constructed
of curved brass H-sections in a grid pattern intended to simulate a

two-inch spacing of the members in both the circumferential and

et e T

=g
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meridional directions. A solid quarter-inch diameter brass edge ring
provided support at its base.

Coordinate Systems. The origin of both coordinate systems

employed was located at the center of the spherical test model, as
shown in Figure 2.6. The "basic" coordinate system (using NASTRAN
terminology) was rectangular, while the "local" system was defined in
spherical coordinates to take advantage of the shell geometry.

Grid Point Selection. The location of member joints was

denoted by specifying the experimental radius and the design meridional
and circumferential angles with respect to the local coordinate

system. Since the edge ring itself was not instrumented radially,
joint locations around its circumference were determined by linear
extrapolation of the radial values of gage points located one and two
inches meridionally from the desired location.

The grid used in the analysis is shown in Figure 2.7. This
grid appears as it wou'd if viewed from the shell center. The members
in the actual model of Figure 4.6 not appearing in the analysis grid
were assumed to provide load transfer cnly, with negligible contri-
bution to the structural stiffness. Joint locations of these members
were not all instrumented, so their true radial locations were not
known.

Incidentally, a sublety of the NASTRAN code required locating
the crown joint .00l degrees both meridionally and circumferentially
from the vertical axis of the coordinate system. Ambiguities in

vector definitions would result if this procedure were not followed.
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Figure 2.6 Coordinate Systems
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Bar Elements and Member Properties. The brass H-sections used

in the model were assumed to be straight members between the joint
locations. The member properties were given previously in part 2.1.2. |

Material Properties. Based on resuits of the tensile tests

o mprea—

as described in 3.6.1 and 4.1.1, the elastic modulus for the brass

material was taken as 10 x 10° psi. A Poisson's Ratio of 0.33 was

assumed. i
Loads. An option for applying a pressure distribution along a

bar member was not available in NASTRAN. A series of radial point

loads applied to each joint was therefore assumed. ¥or most joints

the loads were calculated as follows. The surface area for the circular

segment lying between two parallel circles was computed as
AREA = 2T (cos¢, - cosdp) R? 2.13

These parallel circles were located on either side of a circular ring
of joints and midway meridionally to the adjoining ring of joints.
This area was then multiplied by the external pressure and divided by

the number of joints around a ring, or,

21P

F, = S5 (cos¢, - cosy) R? 2.14
where
Fi = point load applied to joint i
P = external pressure load ,
N = number of joints around a ring
¢T,¢B = meridional angles bounding the segment above

and below, respectively
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R = "best-fit" radius of experimental data. R for

the B2 model was 16.17 inches. -

For the crown joint and the five adjoining joints, the

-——

contributing load was proportioned as follows. One-third of the load

-—pmamne @

between the crown and the adjoining parallel circle of joints was
applied at the crown. The remainder of the load was distributed
equally to the remaining five joints.

Boundary Conditions. The boundary conditions for the B2 model

required secting the vertical displacement of the edge ring to zero.

This was accomplished in NASTRAN by applying the following constraint:

wcos¢s - vsinq)s = 0 2.15

where (bs was the shell opening angle. Here w was the radial and v the

meridional displacements. To prevent rigid body displacement the .
crown joint was restrained agalnst horizontal displacement, and one

edge ring joint was restrained circumferentially to avoid rigid body

rotation.

2.2.3 The PRET Test Model. The fabrication of the PRET

model is detailed in part 3.2.2. It was designed as a spherical
reticulated shell having quarter-inch thick members of a plastic
material, with a two-inch grid spacing. The modél was constrained
at its base by clamping it at the pressure vessel edge.

Coordinate Systems. As in the B2 model analyses the origins

of both the local and basic coordinate systems were located at the
sphere center. -

Grid Point Selection. Joint coordinates were specified by thne

radial distance from the spherical center (as determined by a
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"best-fit" to the experimental data) and by the design values for
meridional and circumferential angles. Locations of joints outside
the range of the measuring device were extrapolared with a curve
through the measurable data on the same parallel ci:cié.

The analysis grid for the PRET model is given in Figure 2.8,
and duplicates that of the actual model. The view is from the
spherical center. The crown node was located slightiy off-center,

again to prevent ambiguous geometric definitions in NASTRAN.

Bar Elements and Member Properties. Straight members were
assumed for the PRET analyses. Member properties for the model were
determined from individual thickness measurements taken onr each member.
The thicknesses varied because of the vacuum~-forming method of
fabrication and ranged from typical values of .22 to .25 inches near
the springing to .19 to .20 inches near the crown.

Material Properties. Based on results of the material property

tests described in parts 3.6.2 and 4.1.1, an elastic modulus of
187,000 psi was used in the analyses. Poisson's Ratio was taken as
0.30 for the plastic material.

Loads. Radial point loads were assumed acting at each member
joint and were calculated in a manner identical to that for the B2
model. Note, however, that the first parallel circle of joints
next to the PRET model crown contained six rather than five joints
among which the load was equally divided.

Boundary Conditions., The existing edge ring geometry of the

PRET model was shown previously in Figure 2.5. The shaded areas

represent circumferential members seen when cutting a meridional

s x ro—
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section through the shell between two meridional members. Joints |
located on the edge ring were assumed to be free to rotate in any
directien but displacements were prevented. The edge ring was
therefore taken as a regular size member with the actual model ;
material outside this member ignored. This assumption was deemed \

reasonable considering the low bending stiffness of the quarter-inch

plastic material protruding from the pressure vessel clamping ring.

{ To prevent rigid body motion ig the PRET analyses, the crown
joint was constrained horizontally and an edge ring jo%nt was
constrained circumferentially.

* . 2.3 RETICULATED SHELL BUCKLING ’

When designing a reticulated shell severai types of buckling
must be considered. General buckling over a large portion of the
shell is a prime consideration. Local snap~through buckling, when !
# ' a joint is,loaded and deflects through such that the local curvature
' is reversed, can also occur. The possibility of member column buckling

between joints must also be examined. ,

In the following section each of the above buckling types was

F"‘ investigated. Appropriate theories are presented and then are

applied to the experimental models previously deccribed.

2.3.1 Buckling Theories. Two different theories for general o

buckling are given here. The effects of live load deflections weve

(20), while material and member properties /

{33, 34, 35)

> included in Buchert's theory

only were considered for Von Karman-type buckling

General Buckling (Buchert). Buchert(zo) developed a general i

buckling theory by calculating deflections during loading and prior -




Y
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to buckling and using a large deflection stability approach. Equation
2.4, the differential equation for secondary edge effects, formed the
basis of this theory.

By maximizing the deflection predicted by Equation 2.8 and

considering a simply supported edge, the result was

ree 34 R

Ymax T T T x T Ee_ (Rg - VN

Buchert presented the results of this theory in the following

2.16

= . y <<
fcrm. Let A IWIHAX For small deflections, or for A/tm 1
2Et:m2 t, 3/2 A
PcrE = = [0.41 (";) - 0.81 -i] 2.17

If A/tm was not much less than 1.0, or for large deflections, the

following expression was used:

2

2Et - A A, T, !
Per, = —z- {-0.54 = -0.145 /9.9(t—) + 3.08(2)
m m m
2.18
A A A s €,
+ 1.09(?-)2 -0.03 - 9.9(t—)2 + 3.08(t—)3 + 0.359(?-)3 }
m m m m m

: Linear elastic material behavior was assumed in the above

(23) derived plasticity

equation, as noted by the subscript E. Buchert
reduction factors for this equation in the event inelastic material
response was anticipated. In that case the plastic buckling pressure

was given by

Pcrp = nPcrE

where

Lo




-

27

3 Es
n = 75 (Et .+3—) 2.19b

In this expression,

the secant modulus, and

E
s

Ee

1]

the tangent modulus associated with the maximum membrane

stress,

General Buckling (Von Karman). Von Karman-type buckling(33)

(34) was

when incorporated with the concept of split rigidities

expressed as

n 2 % 3 /2
PcrE = CE (-R—') (t—m') 2.20

!
Wright‘l3) recommended a value for the constant C of 0.38, while

(35)

Buchert found C to be 0.365. (These values of C do not include a

safety factor.)

Local Snap Buckling. Crooker and Buchert(36) have given the

criteria for local snap-through buckling as follows:

If

R [I
12 ] 1510 2.21

then the local snap buckling can occur. In the above, L is the member

(13)

length. Wright gave the criteria for local buckling as:

R ’ I
z Xi .092 2.22

then buckling would occur for inextensible supports, and if

T [ T2 a3 2.23

then buckling would occur for extensible supports.

1f

- p—
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Euler Column Buckling. For a uniform radial pressure p, the

membrane forces were pR/2 throughout the shell. The member forces,
assuming a square grid with straight members, were thus equal to pRL/2.

Using the Euler column buckling load the critical pressure P, Was

_ 2m%El
PcrE = Rz 2.24

Even with rigid joints the possibility of antisymmetrical buckling
existed; thus the straightforward Euler load was used.

2.3.2 Application to Experimental Models. Each of the

previous buckling equations was applied to the prediction of the
buckling load for the experimental shell models. The following is
a summary of these predictionms.

The B2 Model. The general buckling formula derived by Buchert

(Equation 2.18) was expressed in the following form

2Etm2
PcrE = R * F 2.25
where
A A2 %
F = 0.54 - - 0.145 [9.9¢) +3.oa(t—)3
m m m

2.26

t t
+ \/1.09(A—>2 -3 /sa.sa(A—)2 + 3.08(-=2)% + 0.359(-2)3
t t t t t
m m m m m
From the previously defined properties of the B2 model, tb/tm =
.0445/.00393 = 11.3, R = 16.17 inches and E = 10 x 10° psi. A non-
dimensional plot of the factor F versus the deflection term A/tm is

shown in Figure 2.9, This family of curves demonstrated the sensitivity

—ap—— 4
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Figure 2.2 B2 Model: Equation 2.26
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of the buckling load to live load deflections and to variations in
the shell stiffness properties. Therefore, to determine the buckling
load an estimate of the maximum live load deflection was required.
Three possibilities for this estimate were immediately obvious. The
first was to use the value for maximum combined bending and membrane
deflections given by the split rigidity approach (Equation 2.16). By
iterating between Equations 2.16 and 2.26, a value of Pcr equal to
11.3 was found. Note that linear elastic material behavior was
assumed in both the deflection and the buckling equations above. A
second approach was to use the maximum deflection predicted from a
standard space frame analysis approach like NASTRAN. This method also
assumed linear elastic material behavior but had the advantage of
accounting for geometric imperfections in the shell. Since the B2
shell model was tested experimentally, the third alternative was to
use the maximum deflection measured during the test. Results of the
latter two approaches are presented later in Chapter 4.

As appliod to the prediction of general buckling of the B2
model, the Von Karman approach (Equation 2.20) gave Pcr = 8.2 psi.
Linear elastic material behavior was assumed here also.

For protection against local snap-through buckling, Equation
2.21 by Buchert required that rgR/Lz be greater than .10 for the B2
model. For this model the quantity was .185, thus satisfying the
criteria.

Finally, the Euler column buckling formula gave Pcr = 50.4 psi.
This was considerably higher than the other predicted critical loads,

so column buckling was not expected for the B2 model.

[RPpy S——,
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The Bl Model. Buchert's general buckling formula is plutted
in Figure 2.10. For this model tb/tm = .0560/.00785 = 7.13 and

R = 16.40 inches. When the split rigidity equations were used t»>

estimate the maximum deflection A for the shell, the predicted buckling

Joad was 22.1 psi. Results of this method using the measured experi-
mental deflection from the Bl model test appear later.

The Von Karman approach as applied to the Bl model gave
Pcr = 15.9 psi.

For protection against local snap buckling, the Bl model
provided a value of rgR/L2 = .75 which exceeded the required .10.

For column buckling the critical Euler external pressure
load for the Bl model was 199 psi, which was definitely on the safe

side.

The PRET Model. Figure 2.1l represents the Buchert formula

for general buckling of the PRET model. In this case, tb/tm =

.1307/ = 2.45, E = 187,000 psi, and R = 15.60 inches. Using

.0534
the split rigidity approach to predict the maximum deflection A,
the critical buckling pressure was predicted to be 4.0 psi. This and
other techniques to predict the maximum deflection A for use in
buckling predictions are considered in Chapter 4.

An estimate of the critical buckling pressure by the Von Karman
method gave a value of 3.4 psi.

For snap buckling, the PRET model had a value of rgR/L2 of .24

which exceeded the required .10.

The Euler column buckling pressure was estimated at 24.0 psi. ;
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CHAPTER III

EXPERIMENTAL PROCEDURES

3.1 GENERAL :‘

In order to meet the stated objectives of part 1.3 an 1

experimental program was developed. The procedure consisted of
fabricating three spherical shell models, two of brass and one of
plastic., Thase models were loaded with a uniform hydrostatic water
pressure in a series of static pressure increments. At each pressure
the radial displacement at points of instrumentation was
measured and recorded. Loading continued until buckling occurred.

The types of models and the materials used iu their fabrication
were based on the following criteria. A spherical shape was selected
and a square grid approximation was employed to enhance ease of
fabrication. Member spacing was determined by placing the first
circumferential member above the edge ring near the point of inflection .
of the theoretical bending deflection curve. This criteria applied
to the two models having a two-inch grid spacing. One of the brass
models was fabricated on a one-inch grid spacing to attempt to
identify differences in the behavior of a coarse versus a fine mesh.

The brass material was chosen because of its ready availability
in common shapes in the desired size. Brass also provided relatively
well-defined elastic properties. The plastic material was chosen for
its extreme ease of fabrication. This material was on hand at the
Shell Structures Laboratory at the University of Missouri, as was the

vacuum~-forming apparatus necessary to give the model its initial
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syhericai shape. The effects of creep in the plastic material were
recognized. It was felt, however, that the objectives of the study
could be met in spite of the creep phenomecna.

3.2  FABRICATION OF THE MODELS

3.2.1 Brass. Considering the above criteria, computations

indicated that a brass H-section having the dimensions shown
previously in Figure 2.4 would meet the desired design requiremeats.
To begin fabrication of the first brass model a pattern mold was
selected and the desired two-inch square grid was scribed thereon
(see Figure 3.1). A mechanical guide was then assembled to conform
the sections to the spherical shape of the mold as shown in Figure
3.2. The principal axes of the member were oriented parallel and
normal to radial lines at each point on the sphere.

Continuous circumferential rings were assembled first, and
meridional members were then added. Flanges at the ends of each
member were trimmed (see Figure 3.3) to provide a tongue-in-groove
joint at member intersections. Joints were initially connected
using a soft-solder technique as in Figure 3.4. A high-quality
silver solder was then applied to provide a secure connection at each
joint. Addition of the edge ring (Figure 3.5) completed the model,
several views of which appear in Figure 2 £. This first brass
model, designed to simulate a two-inch square grid spacing, is here-

after referred to as the B2 test model.
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Completed B2 Test Model
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Following completion of the B2 model, it was instrumented for {
testing. Instrumentation consisted of soft-soldering spherical gage

points (steel balls i/32 inches in diameter) at locations around the

shell where it was desired to know the deflections. Typical locations
of gage points were at member intersections, and at half-inch
intervals aloug meridional lines near the edge ring to monitor
anticipated bending behavior. Data was not taken on the movement of
the brass model edge ring due to its recessed position in the test
device described later in part 3.3.1. For the brass models a total

of 251 locations on the shell were instrumented.

After testing the B2 model to its buckling load, it was
straightened and members were added to it to provide a subsequent
test model. This second brass model, designated Bl, was designed
to simulate a one-inch square grid spacing of members. Fabrication
procedures dupiicated those of the B2 model, The Bl model is shown
in Figure 3.7. .

The difficulties encountered in cutting, milling, and soldering
the brass models were considerable. Tolerances were very close due
simply to the small size of the members. The silver-soldering
technique was particularly difficult. Temperatures near 1100° F
were required to flow the solder and bond the joints properly.
Temperatures of this magnitude were sufficient to alter the physical
properties of the material as evidenced by a lower yield stress in
the tensile test results of part 4.1.1. These temperatures naturally
caused significant expansion and contraction during fabrication,

resulting in severe difficulties in holding tolerances and likely




Figure 3.7 Completed Bl Test Model
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producing a highly variable residual stress pattern throughout the
model. The initial imperfection patterns presented in part 4.1

reflect thegse difficulties.

3.2.2 Plastic. A plastic test model was fabricated as part

of the experimental program and is referred to as the PRET model.
A two-inch square grid was to be simulated. Member size was chosen
to be one-quarter inch in depth with a one-half incn width.

To fabricate the PRET model, a quarter~inch thick rectangular
shect of Boltaran 6100 was used. This plastic sheet was vacuum—
formed to the desired spherical shape using the spparatus shown in
Figure 3.8. This apparatus utilized an overhead heating.device to
soften the material, which was then lowered over a spherical mold
and a vacuum applied to draw the plastic downward into the mold
(see Figure 3.9). The resulting continuous plastic shell was scribed
and the desired grid pattern cut out uvsing an electric jigsaw as
shown in Figure 3.10. The edge ring area was then trimmed to permit
clamping into the test pressure vessel described in part 3.3.1.
Thickness measurements were taken of each member at this time for use
in theoretical calculationms.

The completed PRET model is shown in Figure 3.11. Fabrication
in this manner was significantly easier and faster than the
meticulous procedures required for the brass models.

The spherical gage poiiuts for PRET were mounted using a quick-dry
bobby cement. A total of 233 locations were instrumented.

3.3 TESTING APPARATUS AND TEST SETUP

3.3.1 Pressure Vessel. Following the fabricat:ion of each

» pamene
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Figure 3.9 Molded PRET Model
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Figure 3.10 Cutting the PRET Model
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Figure 3.11 Completed PRET Test Model
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nodel it was tested by applicatiorn of incremental static loads. The
loading device utilized is shown in Figure 3.12 and was simply a
pressure vessel capable of applying hydrostatic water pressure loads
to a test model mounted on its upper edge ring support. The water
pressure source was the local water supply system.

In order to apply a pressure to a reticulated test model, it
was necessary to seal the surface of the structure., This was done
by forming a plastic membrane to the desired spherical shape as
illustrated in Figure 3.13. The membrane-stretching device shown
in the figure was developed as part of a test program on epoxy-resin
shell construction at the University of Missouri Shell Structures
Laboratory. For this study a double thickness of four-millimeter
clear plastic membrane was placed across the supporting table and a

steel ring with an appropriate seal was clamped atop the membrane,

Air pressure was applied beneath the double membrane and an alternating

procedure of pressurization and self-relaxation of the membrane was
continued until the membrane held its desired shape without internal
pressure. Shaping of the membrane was required to avoid wrinkling
and subsequent uneven application of the pressure vessel load.

After shaping the membrane, it was inverted and placed in
the pressure vessel with a silicone rubber seal hLeneath its outer
edge. As observed in Figure 3.14 an inverted test model was then
placed in the test apparatus and an edge ring support for the model
was bolted to the upper surface of the pressure vessel, The pressure

vessel bowl was then filled with water, and the trapped air beneath
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Figure 3.14 Mounting a Test Model
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the membrane was vented through the rubber seal. i
A double valve assemhly controlled water flow into the
pressure vessel, The upstream valve damped any lire surge and the

downstream valve stabilized the water pressure at the desired level. ;L

3.3.2 Easterby Apparatus. The objectives of this study

required a highly accurate determination of the position and the
movenent of each experimental gage point on the test models. A test
device for this purpose had been developed and utilized by Mr. Stewart
Easterby, previously a graduate student at the University of Missouri
at Columbia. The original device was modified slightly for the current
study and is shown in Figure 3.15. It consisted basically of a tripod
support bolted atop the pressure vessel with a sensing radial arm to
measure gage point position.

The radial arm assembly appearing in Figure 3.16 was composed
of two basic parts. The upper part of the arm was fastened to a
spherical pivot at the top of the tripod support. This pivot
permitted 360-degree rotation of the arm in a horizontal plane with
a near 50-degree arc in a vertical plane. The center portion of the
arm consisted of a mounting tube containing a linear differential
transformer. This transformer was powered by direct current, and for
brevity will be referred to hereafter as a DCDT (Direct Current
Digital Transformer) device.

3.3.3 DCDT Device. The DCDT device was capable of a one-half

inch core travel and could sense a movement as small as .0001 inches.
At the lower end of the radial arm was a spherical seat fastened to

the DCDT core. A spring—-loaded trigger was attached thereon to permit

s —
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lifring the seating tip while moving the device from one gage point

to another. This latter assembly appears in Figure 3.17.
After attaching the radial amm to the tripod support, the

assembled Easterby apparatus was bolted to the pressure vessel as ‘L
t

shown in Figure 3.18. Independent measurement of potential movement

of the top ring of the pressure vessel and the mounting for the radial

~ gom—a

arm pivot demonstrated that the spherical pivot behaved as a fixed

reference point for gage point measurements.

3.3.4 Pressure Measurement., Two independent measurements of

the applied pressure were takeu during test loadings. These devices
appear in Figure 3.19. An approximate pressure read-out was obtained
from the standard pressure gage mounted on the side of the pressure
vessel, A more accurate reading was taken using a mercury-filled
manometer inclined at an angle and calibrated to provide an easily
and accurately read meniscus.

It is noted from the pressure vessel setup that a differential
pressure existed between the top and the bottom of the shell test
specimen, which was due simply to the weight of the water. The
reference level on the test specimen was taken at its mid-height, and
the pressure readings were correctea accordingly. Due to the volume
of water displaced by the test model itself, an equivalent initial
radial pressure of .15 psi was deemed acting on the model. This small
initial load is included in all pressure readings cited in this study.

3.4 TEST PROCEDURE

The test apparatus was prepared for testing by first filling the

pressure vessel completely with water and venting the trapped air.
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Figure 3.19 Pressure-measuring Devices
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The pla;tic loading membrane was then sealed and the shell was thus
under its initial equivalent preload of .15 psi, as read from the ‘
pressure manometer.

An initial set of radial measurements was then taken. Data

was recorded semi—-automatically using the test set-uo shown in Figure

3.20. The signal from the DCDT device was passed directly to a

- pao——

digital voltmeter. After digitizing, the signal was transferred to a
modified key punch and recorded on cards. An interface device on the
key punch permitted the voltmeter signal to be recorded directly by é
the key punch by simply pressing a recording button. Data on a |
typical card included the test model designation, pressure level,
gage point number, and three samplings of DCDT data from each gage
point. The DCDT device was re—seated on the gage point for each
sampling. A reference rigidly attached to the pressure vessel was
also sampled to permit later correction of the data for drift of the -
electronic apparatus. This point was called the GLO point (gage
length zero) and was sampled intermittently from nine to fifteen times
at each pressure level for each model. Total elapsed time to take
all gage and reference point readings at one pressure level ranged
from 45 to 75 minutes,
Upon completion of the initial data recordings, the pressure
level was incremented. A 15 to 30 minute pause was made to allow the
loading membrane to stretch to its new position and to permit the
pressure to stabilize at the desired level. In the PRET model tests,

the new pressure level was maintained slightly longer to allow creep

activity to diminish. '
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Another set of radial measurements was then taken. This
cyclic procedure of loading and data recording was continued until
buckling of the test model occurred. The deformed position of the
buckled model was then photograpned and the test was complete. L

3.5 DATA REDUCTION

Due to the spherical nature of the experimenta) data obtained
during the test procedure just described, several unique problems
arose upon attempting to reduce the data to a meaningful form. First,
although the test models were nominally spherical in shape, the
fabrication procedures produced an imperfect surface. Iu order to
describe this surface a method was required to define a theoretical
spherical shape having a determinable radius and center location
which best represented the experimental data. Deviations on the test
model surface from this perfect spherical shape were called initial
imperfections. In addition to the problem of defining this sphere -
initially, its radiug ry, the location of its center (X;, Yo, Z,),
and the initial imperfections all changed as subsequent loadings were
applied.

To resolve these difficulties a method of data reduction was
chosen which consisted of performing a least-squares fit of a
spherical surface to all data points on a test model at a given
pressure. The three coordinates (X,, Yo, Z,) of the center of this
theoretical "best-fit" sphere were then used as a reference point Lo
compute the radius r; to each gage point, where the subscript refers
to gage point i. Initial iiperfections d; were computed by subtracting

the radius r, of the perfect sphere from the radius r{ to each gage .
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Deflections due to an increment in the external pressure load on the

test model were determined from the following expression: '
wi = (ri)z - (r;)l +[(Zo)2 - (20)1] cos 94 3.2

where the numbered subscripts represent successive pressure levels.
The quantity jn brackets in Equation 3.2 represents a correction to
account for the vertical movement of the respective best—fit sphere
centers. This was necessary since it was known that the spherical
pivot cn the Easterby apparatus did not move vertically relative to
the test model edge ring. No corrections were necessary for
horizontal changes AX, and AY, since they represented rigid body
translations of the test model.

A computer program to p..rform the data reduction operations

just described was developed and is described in Appendix C. An

~initial step in the program was to adjust the experimentally measured

radii values Ry for any error caused by drift in the electronic
apparatus. This was accomplished by adding any change in the GLO
reading to all radii values measured after each GLO point sampling.
Additionally, the smallest of the three readings at each gage point
was discarded since the farthest projection of the tip of the DCDT
device indicated the best seating of the device on a gage point. The

remaining two readings were averaged and a warning was piven if the
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readings deviated more than + .Q0Ql inches from their average. This
check prevented using an erronecusly large data value from being
inadvertently included in the dava base. The computer program then
performed a least-squares f£it of a spherical surface to the adjusted
rad-%, Rj. With the radius and the center of this best-fit sphere
thus determined, all the required quantities were avalilahle to
compute the initial imperfections d; and the deflections w; due to

external pressure load, according to Equations 3.1 and 3.2.

3.6 MATERTALS TESTING

3.6.1 Brass. Three types of tensile specimens were prepared
from the stock material of the brass shell models. A type S specimen
was simply an eight—inch length of the H-section. Type T specimens
were representative of the B2 (two-inch grid) model and had
intersecting members soldered at a two-inch spacing along its length.
The type O specimens were designed to represent the one-inch grid
model and had the intersecting members soldered at one-inch intervals
throughout . All three specimen types are shown in Figure 3.21.

All brass specimens were tested at a strain rate of approximately
forty-five micro-inches per inch per second as compared to the near-
static loading rate during the shell model tests. An extensometer
having a two-inch gage length was used for the test, which conformed
geometrically to the one- and two-inch grids of the test models,

Values of Young's modulus and the yield stress (defined at
0.2% offset) of each specimen type were determined from standard

tensile tests. Since the stress-strain curve for brass was somewhat
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nonlinear, a chord modulus was determined between 9 ksi and 54 ksi
for the S—type specimens. ASTM Standard No. E8 was followed in the
nerformance of these tests. In accordance with these specifications,
a least—-squares linear fi~ was performed in order to establish the
elastic modulus of the brass.

3.6.2 Plastic. Tensile specimens (designated P-type specimens)

conforming to ASTM D638-61T, "Tentative Method of Test for Tensile
Properties of Plastics," were fabricated and constructed in order to
determine the Modulus of Elasticity of the plastic material. Tensile
specimens of this type are shown in Figure 3.21 also. The loading
rate for the specimens was approximately eighty-five micro~inches per
inch per second.

The tendency of the plastic material to exhibit creep was
recognized at the outset of this study. To approximate the creep
effects, a tension test at a constant stress of 500 psi was conducted
over a four-hour time period. The results of all tension tests for
both the brass and plastic specimens can be found in part 4.1.1 of

this paper. Typical stress-strain curves are also presented.
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CHAPTER IV

RESULTS AND COMPARISONS

4.1 EXPERIMENTAL RESULTS

This chapter presents the results of all theoretical and
experimental investigations of the three reticulated shell models.
First a summary of the brass and plastic material tensile tests is j
given., Deflection contour plots are then presented which demonstrate
the deflection patterns and magnitudes resulting from static pressure
increments applied to the models. Initial imperfections in the
geometries of the as-built models arc also shown. A corresponding
group of deflection contour plots reflect the NASTRAN code theoretical
predictions for each of the models so analyzed. Comparisons and a
discussion of these deflection results are given. Deflections along
selected reference lines are plotte] to illustrate differences in
the predicted and experimental results. The application of general
buckling theories to the experimentally observed buckling loads is

described in a final section.

4.1.1 Materials Testing. The results of the material tests

described in Chapter 3 are presented in Figures 4.1 through 4.4.
Figure 4.1 represents the typical stress vs strain response of a brass
H-section with no soldered jeints (referred to here as an S-tyye
specimen). TFigure 4.2 shows the tensile test results for a brass H-

section having soldered joints at two-inch intervals along its length

(designated as a T-type specimen). The stress-strain curve for a brass
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H-section with soldered joints at one-inch spacings (called an O-type
specimen) appears in Figure 4.3.

In determining the tensile modulus of ~lasticity it was observed
that the initial modulus value varied little aasong the three brass
specimen geometries. The tensile modulus as de:iermined from these
tests was taken as 10 x 10® psi. However, a significant reduction in
the yield stress (defined at 0.27 offset) resulted from the soldering
procedure. The yield stress was reduced from approximately 65 to 70
ksi for the S-type specimens to about 17 to 19 ksi for the T- and O-
type specimens.

Stress vs strain response curves for the quarter—inch thick
plastic tensile specimens (P-type specimens) appear in Figure 4.4.

The tensile modulus thus determined was 187 ksi. This differed
slightly from the manufacturer's recommended value of 200 ksi in
tension and 240 ksi in flexure for the Boltaron 6100 material. The
difference was possibly due to heat effects induced by the vacuum
forming technique during manufacture of the plastic model. The tensile
test specimens were taken from a previously heated sheet of the

plastic material.

The single tension test performed to obtain a rough approxi-
mation of the effect of creep on the plastic shell produced the results
in Figure 4.5. This figure shows the specimen strain in inches per
inch versus the time in minutes. This was a constant stress test at a
stress level of 500 psi. A maximum strain of approximately .0003

occurred near an elapsed time of three hours.
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A summary of the preceding results and of the test model

geometries is given in Table 4.1.

TABLE 4.1

MODEL SUMMARY
Model B2 B1 PRET
Grid Spacing 2-inch l-inch 2-inch
Material Brass Brass Plastic
Cross—Section H H Rectangular
Young's Modulus 10 x 10° psi 10 x 10° psi 187,000 psi
Yield Stress 17-19 ksi 17-19 ksi 3000 osi

4,1.2 B2 Model Deflections. Contour plots of initial

imperfection data and ot deflections resulting from the static
incremental pressure loads applied to the B2 model are presented in
subsequent figures. A schematic of the B2 member grid is given in
Figure 4.6. This plot shows the grid as if viewed from the center of
the spherical shell. Thus a point in the plane of the figure was
located by the horizontal distance Ri . ¢icos ei, and by the vertical
distance Ri . ¢i * sin ei. Also shown in the figure is the location
of the final buckle. A reference line was drawn from the edge ring

to the crown and back to the edge ring, and through the subsequent
buckle and other large distortion regions of the model. The reference
line deflections and the final buckle are discussed later in part 4.3
in which comparisons of predicted and experimental results are made. The

large dots in Figure 4.6 show experimental gage point locations.
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The contour plot of Figure 4.7 represents the initial imperfec-
tions resulting from the manufacture of the B2 model. These
deflections reflect the deviation of individusl joints or memhkeor
intersection points from a "best-fit" of a perfect spherical sazface
to the experimental data. The contour lines were spaced at intervals
of .0200 inches. Negative values of deflections are in a direction
toward the center of the shell, and shaded areas indicate regions of
positive deflection. 1Initial imperfection data was taken with the
pressure vessel filled. Considering the volume of the shell the
equivalent radial pressure applied initially to the models was .15 psi,
and all values of pressure loadings cited include this initial
pressure.

Figure 4.8a shows the deflection contours resulting from the
loading increment from a .15 psi hydrostatic pressure to a pressure
of 1.0 psi. The contour interval was .0020 inches. 1t was observed
duriag the test that the edge ring was not completely seated on the
pressure vessel supporting lip at the .15 psi pressure level. This
was reflected by the deflection pattern near the edge ring in Figure
4.8a. Consequently a reference pressure of 1.0 psi was selected for
the B2 test shell from which to compare deflection patterns.

The next four plots of Figure 4.8 show deflection contour
patterns in the B2 shell for 0.5 psi loading increments from 1.0 to
3.0 psi. Plots 4.8f through 4.8h represent contours for the loading
ranges 1.0 »+ 2.0 psi, 1.0 + 2.5 psi, and 1.0 + 3.0 psi, respectively.

The contour interval was .0020 inches.
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Figure 4.7 B2 Model Inicial Imperfections
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Figure 4.8h 22 ¥uodel: 1.0 %o 3.0 psi
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The combination of initial imperfections and live load
deflections at the maximum prizsure of 3.0 psi is shown in Figure
4.8i. . obsexzve the change in the total deflection pattern, this
figure can be compared with the initial imperfection plot of Figure
4.7.

4.1.3 Bl Model Deflections. Experimental results for the

Bl test model are shown in Figures 4.9 through 4.11. The model grid
work appea.s in Figure 4.9, together with the location of the final
buckle. 1Initial imperfections for the Bl model are reflected in
Figure 4.10 with a contour interval of .0200 inches.

Figure 4.11la gives results of the pressure increment from .15
psi to 1.0 psi which shows an edge ring seating problem for the Bl
model also. The reference pressure for Bl experimental data was
therefore chosen at the 1.0 psi level. Figures 4.11b through 4.11f
represent contour plots for 1.0 psi loading increments from 1.0 to
6.0 psi pressures. Pressure increments of 1.0 to 3.0 psi, 1.0 to
4.0 psi, 1.0 to 5.0 psi and 1.0 to 6.0 psi produced the results shown
respectively in Figures 4.1lg through 4.11j. The contour interval
for all plots in Figure 4.1l was .0040 inches.

The sum of initial imperfections and the live load deflections
under the maximum external pressure load of 6.0 psi is represented
by the contour plot in Figure 4.11lk. A comparison of this plot with
that of Figure 4.10 shows the changes in the total deflection pattern
of the Bl model.

4.1.4 PRET Model Deflections. Experimentsl results for the

plastic shell model (PRET) appear in Yigures 4.12 through 4.14.
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Positive Deformation

Figure 4,81 B2 Model: Imperfections
Plus Deflections at 3.0 psi




82

A .
Nessass &ﬁ.’u‘rﬁih I
m‘""" Ny

"’oi’ f

e A

5

TSARN
SRR
5%

L
------
ooooo

e

........

................
-------------
oooooooo

See?

R
eference Line




Figure 4.10 Bl Model Iuitial Imperfections
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Figure 4.1la Bl Model: .15 to 1.0 psi




Figure 4.11b Bl Model:

1.0 to 2.0 psi
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2.0 to 3.6 psi

Figure 4.11c Bl Model:
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4.0 to 5.0 pst

Figure 4,1le Bl Model:
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Figure 4.11h Bl Model: 1.0 to 4.0 psi







Figure 4.113 Bl Model: 1.0 tc 6.0 psi
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.15 to 2.0 psi

Figure 4.14d PRET Model:
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Figure 4.l4e PRET Model: .15 to 3.0 psi
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The experimental grid is given in Figure 4.12, again with a reference
line and the final buckle position. Figuce 4.13 represents the initial
imperfections for the PRET model with a contour interval of .0200
inches. Since the edge of the PRET model was clamped to the pressure
vessel support 1lip no edge ring seating problem existed, and the
reference pressure level for this model was therefore .15 psi.
Deflection patterns for the experimeni=si data from iche .15 to 1.0 psi,
1.0 to 2.0 psi, 2.0 to 3.0 psi, .15 to 2.0 psi and .15 to 3.0 psi
pressure increments are given respectively in Figures 4.l4a through
4.14e. Figure 4.14f shows the total defleciion pattarn dwe to initial
imperfections plus the live load deflections under an external load

of 3.0 psi. This plot is best contrasted with the initial imperfection
only plot of Figure 4.13.

The hatched areas in these figures represent experimental gage
points which were inaccessible to the radial arm of the Easterby
apparatus., No experim«nital data was therefore available at these
locations.

4.2 THEORETICAL PREDICTIONS

> Jru————

4.2.1 B2 Model Predictions. Results of the NASTRAN computer

code runs are presented in the following figures. Figures 4.15a
through 4.15d represent deflection contours for 0.5 psi pressure
increments from 1.0 to 3.0 psi. The next set of plots, Figures 4.l1l5e
through 4.15g, show predicted results for the 1.0 to 2.0 psi, 1.0 to
2.5 psi, and 1.0 to 3.0 psi pressure increments respectively. All of
the above plots used contour intervals of .0020 inches. Figure 4.15h
shows the sum of the initial imperfections and the preéicted liye load

deflections at 3.0 psi pressure.

e
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ure 4.15a B? 4odel: 1.0 to 1.5 psi
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K ) Figure 4.15b B2 Model: 1.5 to 2.0 psi !




Figure 4.15¢ B2 Model:

2.0 to 2.5 psi
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Figure 4.15d B2 Model: 2.5 to 3.0 psi
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4,15¢ B2 Model: 1.0 to 2.0 psi

Figure
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Positive Deformation

Figure 4.15h B2 Model: Imperfections Plus
Deflections at 3.0 psi
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As noted in Chapter 2, -no theoretical predictions for the Bl

test model were made. Since the joints of all members were not

instrumented, the joint locations were unavailable. .

4.2.2 PRET Model Predictions. Predictions of deflection ;

contours for the PRET test model are given in Figure 4.16. The

following pressure increments are represented in order: .15 to :

1.0 psi, 1.0 to 2.0 psi, 2.0 to 3.0 psi, .15 to 2.0 psi, and .15 to
3.0 psi. A ccatour interval of .0040 inches was used. Figure 4.16f£
shows the combination of initial imperfections and the predicted

live load deflections at an external pressure of 3.0 psi.

& 4.3 COMPARISON OF PREDICTED AND EXPERIMENTAL RESULTS

s 4.3.1 B2 Model Deflections. Comparisons of experimental and

theoretical deflections for the B2 model were made from Figures 4.8
and 4.15. Upou doing so, it was immediately obvious that the correct
deflection patterns were well predicted but thelr magnitudes at

* locations of large deflections were less accurate. In order to better
illustrate these differences the deflections along a reference line
were plotted in Figure 4.17 for the same pressure increments as in

fﬁn the previous contour plots. This reference line (shown in Figure 4.6)
was selected so as to trace through areas on the shell experiencing

the largest displacements and thus representing potential areas of

" buckle formationm.

i Three types of predictions are shown by lines representing

} radial deflection in inches versus the meridional position of various
%— experimental points. Predictions using the split rigidity approach
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} Figure 4.16e PRET Model: .15 to 3.0 psi
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Figure 4.16f PRET Model: Imperfections Plus
Deflections at 3.0 psi
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as expressed by Equation 2.10 are shown as the hatched line in these
figures. NASTRAN predictions appear as the dashed and solid lines.
For the B2 model, the solid lines were calculated by adding the
displacements predicted from a previous load increment to the grid

positions at the start of that increment to get a new set of grid

>~ rpnma.

point locations for subsequent loading. This prediction method was
called the "progressive" method. A second set of NASTRAN predictions
appears as the dashed lines in the figures. For these calculations, the
grid positions at the start of each load increment were taken as those
measured experimentally. These predictions were called the "incremental"
calculations. The remaining data on these figures are the experimental
deflection values at each point along the reference line and are
represented by the circles.

These figures also showed good deflection pattern agreement
between NASTRAN calculations and the experimental results, with
magnitudes in potential buckle regions being underpredicted. This
agreement demonstrated that the original imperfections determined
the future deflection distribution and the location of the potential
and final buckles. .Comparison of the progressive and incremental
NASTRAN calculations showed that the noﬁ;iﬁearlgrowth of the imper-
fections in potential buckle areas was not caused by geometry changes
alone. A calculation of stresses in these distressed areas indicated
that material nonlinearities occurred in the members. For example,
at joint 227 the maximum combined axial and bending stress as predicted
by the NASTRAN incrgmental method at 2.0 psi external pressure load

was 12.6 ksi, and was 16.2 ksi at 2.5 ksi external load. Note that
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stress results were conservative since they ignored the potentially
severe residual stresses initially present in the shell due to the
soldering procedure, and neglected as well the underprediction of
deflection at node 227 above the 2.0 psi load level. Figure 4.2
showed that significant nonlinear material behavior was expected
above the 16 ksi stress level. It can safely be assumed therefore,
that the underprediction in the growth of the deflection pattern in
distressed areas was due to material nonlinearities in the brass.

It was also clear that for live load deflection predictionms,
the split rigidity method was inadequate to predict either the
deflection pattern or its magnitudes. This method ignored iudtial
residual stresses and material nonlinecarities. Due to fhe magnitude
of the initial imperfections, the combination of split rigidity
predictions and imperfections shows reasonable agreement as observed
from Figure 4.17h. This cowbination of imperfections and live load
deflections is common practice, particularly for computing buckling
loads as will be shewn later in part 4.4.

Since no NASTRAN predictions could be made and since the split
rigidity theory was inapplicable due to violation of its basic
assumptions, no reference line deflection plots were made for the Bl
model.

4.3.2 PRET Model Deflections. Comparisons of NASTWAN

predicted and experimental deflection patterns for the PRET model were
made by observing corresponding plots of Figures 4.14 and 4.16.

Excellent agreement between theory and experiment was observed except

at locations near the edge ring. These discrepancies were due in

——
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part to the difference in the pinned edge assumed in NASTRAN and
the actual edge support in the test.
Deflections along the reference line of Figure 4.12 appear §1

for the PRET model in Figure 4.18. NASTRAN predictions for the

"progressive" type analysis appear as the solid lines, and dashed

lines represent the "incremental" type approach. Split rigidity theory
predictions appear as hatched lines and experimental values are shown
by circles. Deflection magnitudes were well predicted throughout
except, as expected, in the potential buckle areas (areas showing the
largest inward deflections).

Close agreement of incremental and progressive type analyses
again suggested that nonlinear growth of the initial imperfection
pattern was due to more than an imperfect shell geometry. Material
nonlinearity, although likely a factor near the time of buckle forma-
tion, did not appear to initiate the nonlinear deflections near the
crown. For example, calculation of combined axial and bending stresses
in this area reflected typical values around 1000 psi at an external
pressure of 3.0 psi. Figure 4.4 indicated an approximate yield stress
of 3000 psi. Even if the experimentally measured deflections were
predicted (they were up to 50 percent low), the resulting member
stresses would still not indicate member yielding. Although the basic
assumptions of the NASTRAN analyses did not duplicate the actual test
conditions, the deflections over the majority of the shell indicated
the assumptions were satisfactory. The most likely reason for not |

predicting the correct crcwn deflections was therefore creep in the

plastic material. The single approximate creep test cited in Figure 4.5
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was conducted at 500 psi axial stress. One can safely assume that

peak shell stresses reached 1500 to 2000 psi at the 3.0 psi pressure
level. The effects of creep typically increase at higher stresses.

It was therefore speculated that creep, and finally the combined effects
of creep and material yielding, led to the significant nonlinear
deflections and later to buckling of the.PRET test model.

The split rigidity concept again failed to predict the live load
deflection patterns and magnitudes, although the total deflection
results including imperfections were again reasonable as shown in
Figure 4.18f. The basic assumptions in this analysis of 1) linear
material behavior and 2) a uniform grid pattern which produced uniform
equivalent membrane and bending thicknesses, were not adequately
satisfied by the test conditioms.

4,3.3 Discussion of Deflection Results. Since the appreciable

under-prediction of maximum deflections in the B2 model was due to
material ylelding, a simple plastic analysis of a portion of the
buckled avea was made. This analysis had two objectives: 1) to
determine if plastic behavior was to be expected, and 2) to approxi-
mate the magnitude of the deflections if plastic behavior occurred.

The area of the shell analyzed is shown in Figure 4.19a. This
area experienced large plastic deformations not predicted by the
elastic analyses. The actual geometry of this area was assumed
equivalent to the planar case of Figure 4.19b. This assumption ignored
potential shell action resulting from the approximately 1 : 20 rise
to span ratio of the section analyzed. The opening angle of the

section was 22.2°. Nodal loads were applied in proportion to those

- yasme
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(b} THE PLANAR CASE 1.27p

&S

~

[y
AN,

il O

NS

~n

[

N

2M
(d) BENDING MOMENT P

DIAGRAM

igure 4.19 Plastic Analysis of B2 BRuckled Area




e mr
¥

138

used in the NASTRAN analyses. Continuous joints were assumed, and the

supporting joints were taken as fixed.

Results of the analysis showed the correct mechanism to be that |
shown in Figure 4.19c, with the resulting moment diagram cf Figure 4.19d.
The ultimate load (assuming a yield stress of 18 ksi for the brass
material) was Pu = 6.52 1b. Since the equivalent concentrated load P
for a one psi external pressure increment was 6.05 1b, plastic behavior
was definitely to be expected for the maximum B2 loading which exceeided
3.0 psi.

The analysis also showed the last hinge would form at node 227.
The deflection thus computed was approximately .0500 inches at node
227. To get an estimate of how well this analysis predicted the excess
deflections not predicted by NASTRAN, the following procedure was used.
The NASTRAN~predicted displacements at nodes 225 and 232 were added as -
rigid body motion to those calculated by the plastic analysis. The
total deflection at node 227 was thus computed to be .0640 inches, or
about 90 percent of the experimentally measured value at the 3.0 psi
external pressure load.

This analysis, although rather crude, indicated plastic behavior
was to be expected in the B2 model test and provided a rough estimate
of the deflection to be anticipated at ultimate load. The combined
results of the deflection studies also demonstrated the current
critical need for relatively quick and accurate analysis techniques for
predicting inelastic load-deformation behavior irn space frames and

reticulated shells. This point will become more obvious in the next .
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section, where buckling theories incorporating deflection criteria are

examined.

4.4 BUCKLING RESULTS :

4.4.1 Parameter Variations. Several types of buckling were

PR

previously investigated in part 2.3. Experimental buckling results
showed that general buckling occurred in all three models. Therefore,
two general buckling theories will be compared with test results in

this section. These theoretical buckling equations are repeated as

follows:
Buchert:
2Et; A A I
Por. = g7 170.54 T - 0.145 [9.9 (T)* +3.08 (D)
E m m m
2.18
A A Ep. 5 .
+ /[1.09 (t—)2 ~ 0.03 = /9.9 (%.—)2 + 3.08 (7:2)3 + 0.359 (—})3}
o} m m m ™
Von Karman: (adapted to the split rigidity concept)
t t
= 2  by3f2
P, = 3658 D D3/ 2.20
E m
Linear elastic material behavior was assumed in these equations and
they were therefore adjusted for anticipated plastic behavior as
follows:
P * MNP, 2,19
P E

where n was termed a "plasticity reduction factor."

- o—
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Application of the above equations to the three test models

required interpretation of the following key parameters:

E Young's modulus

equivalent membrane and bending thicknesses of the

2
o
tl

reticulated shell models
R = shell radius

A = maximum radial deflection of the shell

n plasticity reduction factor

Each of these parameters required that certain estimates and/or
assumptions be made. A brief discussion of each parameter and its
effect on the buckling equations follows.

Young's modulus E for the brass and plastic materials was
determined from standard tensile tests and interpreted as discussed
in part 4.1.1. .

The equivalent thicknesses of the test models required aan
estimate of an "average" member spacing and member pattern since these
quantities varied along the shell meridians. Since the model designs
were based on approximating a square grid pattern, the grid spacings
of 2.0 inches for the B2 and PRET models and 1.0 inches for the Bl
model were used in the buckling equations.

It was observed during the tests that the local radius of
curvature of the potential buckle areas changed rapidly during the
loading sequence. Table 4.2 shows this effect. Beside each pressure
noted in the table are two values of radius R. The first was computed
by fitting a spherical surface to the experimental results for the gage

points within a region surrounding and including the final buckle
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area. The region was chosen as the area for which deflections were
significantly in excess of those predicted by NASTRAN during the highest
load increment. The area was taken within the noted contour of the

figure indicated in the table. For example, the fit for the buckle

. g—

area of the B2 model was computed using the 27 experimental points
located within the .0040 contour of Figure 4.8c. The second radius
value noted in the table was that for the entire shell and was computed
using all experimental data points. The buckle radius changed rapidly,
while the shell radius was affected little during the buckle formation.
If the largest buckle radii thus determined were substituted into the
buckling equations 2.18 and 2.20, the predicted buckling loads would be
reduced (at a minimum) by the multiplying factors noted in the table.
These factcrs were computed from the ratio of the shell radius to the
buckle radius at the maximum pressure noted in Table 4.2, .
The effect of deflections on the buckling pressure predicted by
Equation 2.18 was shown previously in Figures 2.9, 2.10, and 2.11. As
stated in part 2.3.2, the maximum deflection A could be chosen as the
deflection 1) predicted using the split-rigidity method, 2) predicted

(37) is to

by NASTRAN, or 3) measured experimentally. Current practice
add the initial imperfections to the live load deflections determined
from the preceding three techniques. Other esiimates were also
possible and are summarized in the following section.

To show the effect of the plasticity reduction factor n, the

B2 model was studied as an example. Computation of the factor from

Equation 2.19 required an estimate of the shell member axial stress.

The factor n is therefore plotted versus the axial stress OA for the




-—:7'
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tensile test of Figure 4.3, and the results are shown in Figure 4.20.
To account for nonlinear behavior below the yield stress of the
material the initial tangent modulus was used for E in Equation 2.9.

4.4.2 Buckling of the B2 Modei. Photographs of the B2 test

model after it had buckled are shoum in Figuve 4.21. The buckling
pressure was between 3.0 and 3.5 psi.

A complete summary of the load-deformation relationships and
the applicable general buckling theories is represented in Figure
4 .22a, b, and ¢, and in Table 4.3. The results of two deflection
prediction techniques are shown in the figures. The batched 1line
represents the split rigidity theory prediction of the maximum
deflection due to combined membrane and bending effects. The solid
line represents the NASTRAN prediction of the maximum deflection in
the B2 model. This maximum occurred at node 227, which was the
central point of the final buckle. The experimentally measured
deflections at the same location are shown by the circles in the
figure.

Two general buckling theories assuming elastic material
behavior also appear in Figure 4.22., Buchert's formula (Equation
2.18) showed the effect of deflectiorns on the predicted critical
buckling load and is represented by the dashed line. The Von Karman
theory (Equation 2.20) as adapted to the split rigidity concept

predicted a constant buckling load independeat of shell deflections

and is noted at the 8.2 psi level.
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Figure 4.21 Buckled B2 Test Model
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As previously mentioned, the initial imperfections are
usually added to the live load deflections, and the combined total
deflection used for the quantity A in Equation 2.18. Figure 4.22a
shows load vs live load deflections only. Figure 4.22b represents
the same type of relationships, however the deflections showm are
the combination of 1live load deflections and "global" initial
imperfections. Global imperfections were those ccamputed by
performing a least-squares fit of a sphere to all the data points
and applying Equation 3.1. The abscissa of Figure 4.22c represents
the sum of the "local" initial imperfections and the live louad
deflections. Local initial imperfections were computed by
performing a least-squares fit of a sphere to only ‘hose data
points wirthin the area of the final buckle, and then applying
Equation 3.1. Recall that Table 4.2 was compiled using this approach
in order to trace the change in the local radius of the buckle area.

A summary of .all huckling load predictions is presented in
Table 4.3. General buckling predictions are given for both Buchert
and Von Karman theories, and the Euler column buckling load is
shown, These results permit a quick comparison of the various
theories and the assumptions which were made.

Since the live load deflection predictions were based on
linear elastic analyses and 1t was known that nonlinear behavior
occurred, it was necessary to apply a plasticity reduction factor
to the results. TFor the B2 Model at the buckling load the member
axial stress was estimated to be 7 ksi. From Figuve 4.20, the

corresponding reduction factor was 0.8. The przdicred results of
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Table 4.3 for the B2 model would therefore be modified by this factor.
As an example, using the NASTRAN predictions (which were considered
more credible than the split rigidity technique for predicting live
load deflections) the predicted buckling load using Equation 2.18
was 5.7, 5.2, or 5.3 psi depending on the choice of the initial
imperfection value. Current practice is to use the local
imperfection in combination with the live load deflection. Thus the
predicted buckling load for the B2 model by using the preceding
rzasoning (see Figure 4.22c) was 4.2 psi, a value within approximately
30 per cent of the observed tuckling pressure.

From the parameter variations discussed in the previous
section, another correction factor related to Equation 2.18 was
congidered. From Table 4.2, the local radius of the buckled area
was shown to increase rapidly as the buckling load was approached.
Extrapolating the experimental deflection curve of Figure 4.22c
to its horizontal asymptote, the deflection at incipient buckling
was .133 inches. A local radius of 19.5 inches was required in
Equation 2,18 to predict the correct buckling load. Projecting the
B2 model results iﬁ Table 4.1 above the 3.0 psi level, it is entirely
reasonable to assume that this critical radius value was achieved
near the critical buckling load.

4.4.3 Buckling of the Bl Model. The buckled configuration

of the Bl test model 1is shown photographically in Figure 4.23. The
buckling pressure was between 6.0 and 6.5 psi.
Load-deformation relationships and general buckling criteria

for the Bl model are summarized in Figure 4.242, b, and c, and in

- ——




Figure 4.23 Buckled Bl Test Model
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Table 4.3. Only the split rigidity prediction of deflection is shown
in the figures since NASTRAN calculations were not made for the Bl

model. Both the Buchert general buckling equation (dashed line) and -

the Von Karman criteria appear in the figure.

« g

A maximum deflection at incipient buckling of .157 inches was
estimnated for the Bl model. Considering geometry changes only, the
required buckle area radlus to correctly predict the actual buckling
pressure using Equation 2.18 and Figure 2.24c was 19.0 inches. The
results of the radius change study (see Table 4.2) showed that this
radius value was likely achieved at a pressure slightly below the
6.0 psi level.

4.4.4 Buckling of the PRET Model. TFigure 4.25 shows the PRET

model after it buckled at an external pressure of 3.15 psi.

The PRET model buckling criteria and load-deformation behavior
are shown in Figure 4.26a, b, and ¢, and Table 4.3. Both NASTRAN
(solid line) and split rigidity (hatched line) deflection predictions
are shown along with the Buchert (dashed line) and Von Karman buckling
predictions.

As Figure 4.26c shows, when the NASTRAN prediction of maximum
live load deflection plus the local initial imperfection was used in
Equation 2.18 a buckling load of 2.45 psi was predicted. This
predicted critical pressure was 78 per cent of the actual value, which
represents an under-prediction. The results of Table 4.2 indicate
that a significant local radius change occurred in the buckle area.
This evidence also substantiates the under—-prediction of the critical
pressure for the PRET model. Thie under-prediction of buckling
behavior was not totally unexpected, and has been observed by numerous

other investigators.
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CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 SUMMARY

The objectives of this research were to 1) determine if
reticulated domes could be analyzed and would behave as continuous
domes, 2) to determine their load-deformation response up to the
point of buckling, and 3) to study the growth of imperfections in
model reticulated domes. A fourth objective was to check the
validity of several current buckling theories as applied to
reticulated domes.

A theoretical analysis was developed to predict the load-
deformation relationships of spherical reticulated domes subjected
to a uniform static radial pressure load. A “"split rigidity"
concept was described in which the shell was given an equivalent
membrane and an equivalent bending thickness. Equivalent, in this
case, meant a thickness equal to that of a continuous shell
responding similarly in membrane and bending action. The theory
was based on elasti: material behavior.

A second analysis approach was employed in the study, namely
a space frame analysis using the NASTRAN finite element computer
code. The measured geometry of the test models was used as input
to the analysis. The results of the application of a series of
incremental static loads were studied, with the deflected position
of the joints added to the original geometry to provide initial

conditions for a subsequent load increment.
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An experimental program to check the validity of the above
theories was then conducted. Three reticulated shell models were
fabricated to simulate the following grid patte.ns: 1) a brass
model with a two-inch square grid; 2} a brass wnodel with a one-
inch square grid; 3) a plastic model with a two-inch square grid.
The brass models were constructed of 1/8~inch H-sections. The
plastic model was vacuum—~formed to a spherical shape and the desired
reticulated member grid pattern was then cut from the molded shell.
Tensile specimens of each material type were fabricated and were
tested to determine the appropriate material properties.

The test models were lnaded hydrostatrically with water pressure
in a test pressure vessel. The radial deflections at apprcximately
250 locations on each model were measured at increasing increments
of load. Measurements were made using a unique pivoted radial arm
fabricated specifically for spherical shell testing, and measuring
to an accuracy of .0001 inches displacement.

The deflection data taken at each load for the models was
reduced by fitting a spherical surface through the data using a
ieast-squares technique. Comparisons of theoretical predictions
and experimental data were then made by plotting deflections along
specified reference lines, and by making contour plots of the
deflecticn patterns throvghout the model shell. The growth of
initial imperfections was then studied bv comparing the initial
imperfection pattern with the deflection behavior under load.

Loading of each model continued until buckling occurred in

some portion of the shell. The buckling loads were then compared
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with several existing buckling theories. These theories included
general buckling theories by Buchert and Von Karman, local snap
buckling by Wright, and Euler column buckling.

5.2 CONCLUSIONS

Fabrication of the brass reticulated domes was quite difficult,

- g

The silver-soldering technigue required considerable heat, with the

resulting temperature differentials in the model causing severe

problems in maintaining design tolerances. Inward radial imperfectionms
ranged from 1/120th to 1/80th of the shell radii. In addition to

the imperfection problem, the high heat levels applied to the brass
caused material property changes. Examination of the results of

the brass material property tests indicated a significant reduction

in the material yield stress near the structural joints by nearly a
factor of four. The speculation of considerable inelastic material
behavior in regions of high deflections and stresses was verified.

The large nonlinear growth of the initial imperfection pattern was

primarily due to inelastic material response, znd led directly to

the buckling failure of the brass models. Significant residual
stress patterns from the soldering technique apparently influenced
the inelastic matertal response also. Yielding of the material was

not as significant a factor in the plastic model. Rather, accelerated

r creep at high stress levels was considered the primary influence on
i the nonlinear growth of the initial imperfection pattern. Both
materials, as expected, exhibited a somewhat nonlinear stress—-strain

%- behavior at low stress levels during tensile material property tests.
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The spherical shell test technique using the modified Easterby
apparatus proved to be fast, reliable, and accurate. The device
produced repeatable results with the desired sensitivity. Data
sampling with the semi-automatic kcy punch interface speeded the
process significantly. The data reduction program developed in the
course of this study provided a greatly simplified, rapid, and
straightforward procedure for handling the voluminous data produced
during the experimental program.

After development of the split rigidity approach for predicting
deflections and comparison of its predictions with the experimental
results, it was apparent that this approach dil not adequately predict
live load deflections for the test models in the study. This was not
unexpected when the basic assumptions made in the split rigidity
theory were examined. First, designing a reticulated spherical shell
with uniform equivalent membrane and bending thicknesses was not
totally achieved in the models employed. Second, the brass material
used was not a linear elastic material as assumed, and the plastic
material experienced creep phenomena not accounted for in the theory.
Finally, a test model with initially stress~free members was not
achieved. The split rigidity concept produced considerably better
results for the plastic model than for those constructed of brass and
when live load deflections were added tc the initial imperfections the
results were reasonable. The validity of the split rigidity approach
for predicting live load deflections was not clearly established by
this study since its basic assumptions were not adequately

satisfied.
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The analysis approach using the NASTRAN code, however, proved
to be more reliable and to shed considerable light on the source
of the nonlinear growth of deflection patterns in reticulated shells.
When compared with experimental results the NASTRAN predictions
exhibited good accuracy as to the shape of the deflected model.

The actual magnitude of the predicted deflections was less accurate
due to material nonlinearity and early yielding in the brass models,
and to creep in the plastic shells. These factors were not
accounted for in the NASTRAN approach.

The experimental results also demonstrated that the deflection
pattern growth was primarily dictated by the initial imperfection
pattern following model fabrication. Without exception, the three
models tested showed that the deflection patterns continued to grow
as during the first load increment (although not linearly), and
that the point of maximum deflection during the first load increment
(ignoring edge ring seating) became the location of the final buckle
at the buckling load.

The results of the check of current general buckling theories
for reticulated shells indicated satisfactory results for Buchert's
theory. Buckling of the models was predicted within thirty percent.
The plastic material behavior of the brass models was accounted for
through the use of plasticity reduction factors. The predicted
buckling load was below the experimental results for the plastic

model and was above the results for the brass models.

o
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The practical implications of this study are two-fold. First,
the split rigidity concept should not be considered invalidated by
the results of this research effort. 1In fact, the buckling load for
all three models was satisfactorily predicted using Buchert's
equation (based on split rigidity theory) and considering the total
deflection to be the sum of the live load deflection as predicted by
NASTRAN plus the local imperfection. The imperfections in the test
models obviously dominated their buckling behavior. For the case of
actual reticulated shells which would be built to closer tolerances,
the split rigidity theory would be expected to predict live load
deflections more accurately. Thus, this approach remains an
extremely useful, quick, and economical tool for the preliminary
design of reticulated domes. Initial estimates of member sizing
can be greatly facilitated by this method prior to a necessarily
more costly and rigorous conventional space frame analysis.
Secondly, the design and more particularly the construction of a
reticulated dome could realistically be checked by first performing
a post-construction survey of the shape of the shell. Using the
as-built geometry of the shell, a final computer analysis could be
made to determine points of maximum predicted deflection in the
constructed dome. These locations could then be checked using the
appropriate buckling equations such as those examined in this study.
Although not recommended for all domes, a post—construction analysis
of this type could be potentially helpful in making decisions on
the adequacy of construction projects which are questionable or in

dispute,
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It is clear that an exact technique for the prediction of
load-deformation behavior of reticulated shells up to the point of
buckling is not currently available. However, an existing technique
for the prediction of buckling loads in reticulated domes has
produced satisfactory results for the experimental verifications
in this study. The results of this effort have been presented in
the hope that added insight has been gained into the problem and
that others may be guided and encouraged by these results to conduct

further research in the area.
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APPENDIX A

THE SPLIT RIGIDITY ANALYSIS METHOD

The theory and analysis presented in this section were utilized(zo) ‘
in the prediction of bending and membrane deflections of reticulated
spherical shells under uniform radial load. The principle of the
split rigidity concept is introduced here. Basic assumptions of the
method are presented, expressions for forces and moments are developed,
and boundary conditions for various degrees of edge fixity are

examined.

A.1  ASSUMPTIONS

The following assumptions formed the basis of the split rigidity
deflection prediction concept:

1) The shell material behaved in a linear elastic manner.

2) A reticulated spherical shell was to be examined.

3) The shell was loaded by a uniform radial pressure.

4) A constant equivalent thickness was assumed to replace the
shell-like structure for membrane action, and another constant equiv-
alent thickness replaced the reticulated structure for bending
behavior.

A.2  BENDING DEFLECTION THEORY

A.2.1  Generzl. The problem was to investigate the bending

effect on a reticulated spherical skecll by forces and moments
uniformly distributed along its lower edge or springing. By
treating the shell as having constant "equivalent" membrane and .

bending thicknesses a modified closed form analysis as applied to
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thin shells was performed. An equivalent membrane thickness was
obtained by considering only the membrane behavior of the shell,

and an equivalent bending thickness was determined by studying the
effects of bending action on the shell. This concept was called the

split-rigidity concept.

A.2.2 Equilibrium. The basic shell theory referenced herein

was given by Timoshenko(ll). Its extension to include the split

rigidity concept follows. The theory develnpment began by consid-
ering the equilibrium of a shell element bounded by two meridians
and twou parallel circles as shown in Figure A.l. The angle 0 defined
the position of a meridian. The angle ¢ defined the position of a
parallel circle, formed by a normal to the surface and the axis of
rotation. A meridian plane and a plane perpendicular to a meridian
at a point on the surface were principal planes of curvature, and
the principal radii of curvature were of magnitude R for the spherical
case. From the figure, r = R sin ¢. Based on the assumption of a
symmetrically applied load, the circumferential force Ne and Me (per
unit length of shell) were constant along a given circumferential
line. The meridional normal force N¢, shear force Q¢, and bending
moment M¢ (per unit length) changed along a meridian as noted in the
figure. The external load Z (force per square unit of shell) normal
to the shell was the only load applied. Changes in curvature were
neglected in deriving the three basic equations of equilibrium.

By taking the summation of forces tangent to a meridian, the

following differential equation resulted.
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Figure A.1 Free-Body Diagram of a Shell Element

170




—— L,v

171
d " 11
— - -+ = .
% (N¢ ro) Ne cos¢ Q¢ r, 0 A.l
The summation of forces perpendicular to a meridian gave
11 1" . d 2
N¢ T, + Ne R sind - 36 (Q¢ ro) + 2 T, R =0 A.

The final equilibrium equation evolved from taking the summation of

moments with respect to a tangent to the parallel circle. This gave

d
-— M ro) - M

% M 8 R cosd + Q¢ r, R = ¢ A.3

A.2.3 Strains and Curvature Changes. For a symmetrical

deformation of the shell, the displacement of a point on the shell
was described by the displacement w normal to the middle surface and
the displacement v tangent to a meridian as shown in Figure A.2. Due
to these displacements, an element of a meridian changed in length by
the amount

dv

% w do A.4

Since the original length of the element was Red¢$, the strain

in the meridional direction, €¢, was

= L v _
€¢ * 1 G W) A.5
An element of the parallel circle underwent a strain 86 due to

the given displacements which was equal to

€y = -% (v cotd - w) A.6
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Figure A.2 Shell Displacements
In order to obtain expressions for bending moments, the changes
in curvature were required. In terms of the given displacements the

change in curvature of a meridian was

1 d

= L1 d dw
Xq) - RZ d¢ (V + d¢) A.7

Similarly, in the plane perpendicular to a meridian the change

in curvature was given by

d

s oader 2

- -

a .\

L
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A.2.4 Forces and Bending Moments. By the use of Hooke's law ‘

the membrane forces and strains were related. Thus, |
. " Etm dv ‘
N¢ = R—(i-—\)z-j- [(?ITP'—W) + v(vcotd - w)] A.9
" et dv
Ne = m_—vz-)- [(vcotd - w) + \)(d—‘b'-w)] A.10

In the above expressions E was the modulus of elasticity and v was
Poisson's ratio for the shell material. Since these equations were
obtained by considering membrane stresses and strains only, tm was

used to designate the membrane thickness of the shell.

By relating bending moments and changes in curvature in a like

manner, the following results were obtained

M = - A v+ 99 v + 39 A1l
s = TZR(IvD) ldg v b veotd (v 6 .1

M, = oy [cotd (v + ) +vd (v + 3y A.12
o TG [0 (g Vg 0t :

In these equations t, was designated as the bending thickness of the

shell, since the expressions evolved from bending considerations only.
The practice of assuming tm and tb to be different quantities was,

as mentioned before, called the split-rigidity concept.

A.2.5 Differential Equation Solution. The equilibrium

equations, Equations 1 to 3, contained five unknowns. They were the
1" 1"

forces N¢, Ne, and Q¢, and the bending moments M¢ and Me. By substi-

tuting Equations A.9 to A.12 into the equilibrium equations, the

number of unknowns was reduced to three: v, w, and Q¢.




- ~

(31)

Geckeler , however, suggested an alternate mithod of
solution by introducing two new variables. The first, V, was the

angle of rotation of a tangent to a meridian.

v = %(v-!—-d—w- A.13

dg

The second variable, U, was defined as
U = R A.lli
%

For simplicity, Equation A.l wzs replaced -by considering
equilibrium of the shell above a parallel ciccle (se= Figure A.3).
Since the objective was to determine the secondary bending effects

at the edge, no external load was assumed acting on the shell.

Figure A.3 Shell Edge Forces

{1
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11 U
N, = cotp = — cot A.15
s = Qcotd = g coto
Substituting this expression into Equation A.2 and simplifying
(note Z = 0) gave
S S - A6
0 dé R d¢ :

To relate U and V, Equations A.9 and A.1C were solved for the

1t n
displacenents v and w in terms of W, and Ne, giving

¢

dv R " ll,‘

By eliminating the derivative dv/d¢ from Equations A.19 and A.20, the

—d'q;-w = E;[N¢ \)Nej A.17
R 1" "
veotd - w = It [Ne - 0N¢] A.18
2
Eliminating w from Equations A.17 and A.18 gave
dv _ - R "
a0 veotg Etm [N¢ Ne] A.19
; Differentiating Equation A.18 yielded
| &y voood o R4l A.20
L 3% <t - Sin% a ~ Er_ 4 8 g -2

following resulted:

L)

+ ..dﬂ = RV = MC_O_CQ [H" - N"] A.21
F dé Etm ¢ 0
' R d 11 "
h Et; rry [Ne - de)]

R
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1 1
Substituting Equations A.15 and A.16 for N¢ and Ne, the first of
two equations relating U ard V was obtained.
_ 1d _cotpdu 1 . 2
Etmv = Rd_¢2’ R d¢+R(V+c°t¢)U A.22

A second equation relating U and V was obtained by substituting

Equations A.1ll and A.12 for M¢ aad He into tie third equilibrium

equation, Equation A.3. Using the new variables U and V and introduc-

ing the flexural rigidity quantity Db = Etb3/12(1-v2), the desired

equation was

U _ _1d%V  cotd dv 1 2
—-Db = RW R dé + R(\)-i-cot: o) Vv A.23

Thus the problem of edge bending of a spherical shell required
integration of the two second order differential =quations A.22 and
A.23. Note that constant equivalent thicknesses were assumed through-

out. In terms of Q¢ and V, the above equations were

d?q dQ

Wg + cotd ﬁ - (~v + cot?}) Q¢ - --Eth A.24

d%y dv 2 RZQQ

567 + coté-aa - (v +cot‘d) V = 5 A.25
b

Rather than solving the preceding two equations completely, an
approximation was introduced and justifiea as follows. For thin
shells, the quantities Q¢ and V damp out rapidly with increasing
aistance from the Edge. Figure A.4(9) shows this damping effect for
several quantities of interest. It was assumed that Q¢ and V were
ruch smaller than.theix first derivatives, and that their first

derivatives were in turn much smaller than their second derivatives.

11

e
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Figure A.4 Dazmping of the Edge Effects
This assumption was verified as shown later. Equations A.24 and
) A.25 thus reduced to
T
a2v RZQQ
_-2- = A'27
d¢ Db

These equations differed from the approach reported by Timoshenko(ll)
in that the membran~ and bending effects were separated. This
separation (the basis of the split rigidity concept) is reflected

in the use of the membrane thickness t and the bending rigidity

term Db. By eliminating Q¢ from the above, the following fourth order

differential equation ) was obtained:
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i“—‘,,i + 4KV = 0 A.28
dé
where
tn
K* = 3R? (1-v?) -7 A.29
“b
" . . (31) .
Equation A.28 is generally known as the Geckeler Equation.
Its general solution was represcnted as
- -k oy Ko
vV = Cle sin(kd + Yl) + Cze sin (k¢ + YZ) A.30

vhere Y represented phase angles to be determined from the edge
boundary conditions. Knowing that the edge disturbance damped out
when moving avay irom the edge, the first term in Equation A.30 was

izregarded. A new variable a, the angular distance from the lower
edge or springing of tne shell, was introduced. By denoting ¢s as the
opening angle of the shell from the apex to the springing as shown in
Figure A.S5, the following relationship was observed:

oa = ¢s - ¢ A.31

Figure A.5 Angular Variables

‘3
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Thus the solution of the differeanc.ial equation was written as

Ce % sin (ko + ) A.32

<
]

Note at this point the previous argument that the iower order

terms for Q¢ and V in Equations A.24 and A.25 were ignored. The

first derivative effectively multiplied Equation A.32 for V (similarly
for Q¢) by K, and the second derivative multiplied it by k2. Haas(g)
stated that for thin shells (shells having a minimum radius to thick-
ness ratio of at least 50), the value of K is approximately 10. (Fer
reticulated shells, the thin shell criteria becomes R/tm, where R is
the radius and tm is the membrane thickness.) Since the second and
third terms in Equations A.24 and A.25 were approximately one-tenth
and one-hundredth the value of the respective terms used in the solu-

tion, it was felt that this approximation was justified.

A.2.6 Final Exprcssions. The expression for the slope of a

tangent to a meridian, V, was given by Equation A.32.
The shear force Q¢, due to edge bending, was obtained from
Equation A.27. Differentiating V the first time gave

v
d¢

= kce X% [sin (ko + Y) - cos (ka + y)] A.33
Using tho trigonometric identity for the difference of two angles,
the follor:ing was observed:
sin [(ko + v) --E] = L [sin (ko + v) - cos (ko + Y)] A.34
Yoo

Thus

1
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SV o 2 kce ™ ® sin (ke + Y - -E) A.35

d¢é

Therefore, differentiating V resulted in multiplying the basic

quantity by Y2 K and employing a phase shift of -w/4. The final

expression for the shear force Q¢ thus became

ZI)b'<2 -KO il
Q = —7— Ce sin (kx + Yy - 7) A.36
¢ R 2
"
The meridional force N¢, due to edge bending, was given by
Equation A.15
1
N, = Q, cot A.37
p T T oot

The circumferential force Ne was obtained from Equatiorn A.16

- - b KO . , _ 3m
Ne =% - RE Ce sin (ko + v 7 ) A.38

" dQ¢ 2"2— D K3

The defiaction w, normal to the shell, was of primary interest
in this study. In Figure A.6, note that the increase § in the radius

of a parallel rircle was given by

A.39

bt— 1, =R sing —

Figure A.6 Displacement of a Point
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Thus the desired deflection w due to bending was i
-6 R " 1"
= = - = - — -V A,
w sind Ree Etm (Ne N¢ A.40
" H
From Equations A.37 and A.38, note that NB was of the order v2 K
1 \
greater than N¢, so the second term in Equation A.4C was dropped. {
The final expression for w then became
= - gg e % sin (ke + v - %E) A.4L
V2K

Finally, the expression for the meridional bending moment M¢
was obtained from the combination of Equations A.1ll and A.13.

Dropping the lower-ordered term V for the reason given previously,

-Ko

Db/fk -
M, = - Ce sin(ka + v ~ i) A.42

P K

A.3  BOI™MARY CONDITIONS

A.3.1 Deflection Compatibility. Figure A.7 illustrates the

primary force reactions and the compatibility restoring forces and
moments (9) between a shell and its edge beam support. The first

requirement to satisfy compatibility between the shell and the edge

Figure A.7 Compatibility Restoring Forces
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beam was for deflections. Therefore the following was necessary:
w o+ v = W + w A.43

In the above equation as im those following, non-primed quantities
represented primary or membrane ef. cts, and double-primed quantities
reflected the effects of bending. The subscript "s" denoted
properties of the shell, and "b" denoted properties of the edge beam.

The deflections in Equation A.43 were given as follows:

- .06 _ R - ;
Vo = " Sing = (M vN<b) A.44
S m S S

where the subscripted angles ¢s and 98 denoted values at the shell
springing, and

" R 1" "

A T (Ne - vN¢ A.45
m S S

"

where N¢ was neglected because it was of the order Y2¢ smaller than

" ]
Ne (see Equations A.37 and A.38). Also,
s

RroN¢ cosd)s

F r
v R 'Ho _ S
wo= T Ab EAb A.46
where Ab was the cross-sectional arza of the edge beam, and
"
" F,r RrOQ‘b
v, =-R Ao S_ - A.47
b E Ab EAb51n¢s

Substituting Equations A.44 through A.47 into Equation A.43 and
evaluating the terms at the springing where o = 0, the requirement for

deflection compatibility was that the constant C be as follows:

{1
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N
0 r_cosd
—2x2 [?.E+N¢ ( Abs—-‘t’—)]
c = B Stt L A.48
3 on W

E [V2k sin (Y —4—-) +

A.3.2 Kotation Compatibility. A second requivement for

compatibility was that the rotations of the shell and the edge beam

match. This requirement was stated as
vV +V =V +V . A.49

wher the subscripts and primes were as defined previously. Since
there was no edge rotation induced by primary stresses, the first

term dropped out. The other terms were defined as follows:

v = ce <% sin (ko + 7v) A.50

-3
|

(FHa - Fvb) VT = (—aN¢scos¢s + bN¢Ssin¢s)VT A.51

where VT was the rotational flexibility of the edge beam (or the

rotation for a unit moment M¢) and was given by Roark(32) as

. R
Vo = A.52
Next,
y y %,
v, = (M¢s + Fya) V= (M¢S +-s-i—m$;a) V. A.53

Substituting Equations A.50 through A.53 into Equation A.49,

the requirement for rotation compatibility at the springing became

i\
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_C_s%_[ = 'ﬂ¢ (-a coscbs + b sin¢s)
T s A.54
Y2 k D C
. W a2k . &
t g [sin(y -9) + Rsing_ sin(y - 2)

1.~ for any case of edge support, the simultaneous solution of
Equaiions A.48 and A.54 for C and Y supplied the required data for
the determination of combined membrane and bending deflections along

a shell meridian by the following formulas

w ~ E%— [Ne vN¢] - Bg'e_xa sin (ko + vy - %E) A.55
m " Y

Two special cases of edge support were examined as follows:

4.3.3  Simply Supported Edge. The case of a very flexible

edge beam was readily analyzed by noting that the edge bending
monent M¢s was zero. This effectively replaced Equation A.54 from
waich y was otherwise determined. From Equation A.42 the phase
angle was then equal to m/4. The constant C was found from Equation
A.48, and the results substituted into Equation A.55 to give the

values for combined membrane and bending deflections along a meridian.

A.3.4 Fixed Edge. Since at a fixed edge the slope V was

zero, the phase angle Y became zerc. The combined membrane and bend-

ing deflections were then found as in the previous case.
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APPENDIX B

STATIC ANALYSIS RY THE STIFFNESS METHOD

A static analysis by the stiffness method was performed using
the NASTRAN finjte element computer code. The code has numerous
analysis options, finite elements, and types of loadings whicih make
it a very useful and versatile structural analysis tool. Described
in this section are the opticns used in the analysis of the
reticulated shell mudels, the program flow, and the solution
procedure in a typical NASTRAN static analysis.

B.l ASSUMPTIONS AND DEFINITIONS

Linear elastic material behavior was assumed in the analysis
method described herzin. Joints were assumed to provide full
moment transfer. The location of each joint was specified tuv a high
degree of accuracy using the measurement techniques described in
Chapter 3.

The analyses of the test models utilized the advantage offered
by the spherical geometry of the shells. NASTRAN provided for
description of the problem geometry in either rectangular,
cylindrical, or spherical Jisplacement coordinate systems as shown
in Figure B.1l. Each joint, or grid point, had a unique digplacement
coordinate system associated with it. The so-called “global"
coordinate system was the collection of all displacement component
directions in their own coordinate systems. All matrices were
formed and all displacements were calculated in the global

coordinate system.,
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Figure B.1 NASTRAN Coordinate Systems
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NASTRAN finite elements included rod, bar, plate, and shell
elements, among others. Bar elements were selected for the reticulated
shell analyses. The bar element included axial, bending, and
torsional behavior.

Static loadings available included concentrated loads at grid

points, pressures on surfaces, or equivalent loads resulting from !
thermal expansion, from enforced deformations of structural elements,

or from enforced displacements of grid points. The first option was

selected and applied hers, with each concentrated load calculated as

described in part 2.2.

Constraints could be applied to a structure in the form of single-
point and multipoint constraints. Single-point constraints were
applied by specifying the value of enforced displacements, any or all
of which could be zero. Multipoint constraints were defined by an
equation of the form §A3uj = 0, which implied a linear relationship
among the specified degrees of freedom uy. Multipoint constraints
were employed to enforce a zero vertical displacement of the brass
model edge ring.

B.2 GENERAL PROBLEM FLOW

The general problem flow of a NASTRAN static analysis by the
stiffness method is shown in the flow chart of Figure B.2. The
application of the pattern shown is presented in the following
section as the solution procedure is described.

B.3 NASTRAN SOLUTION PRCCEDURE

Having input all the required data to NASTRAN, the geometry

processor performed the following tasks. All cocrdinate systems were
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Figure B.2 General Problem Flow
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transformed and the locations of all grid points were determined in
the "basic" or global coordinate system (a rectangular coordinate
system). Internal resequencing of grid point numbers was performed if
specified. Multipoint and single-point constraint equations were then
generated.

The stiffness matrices were then formed and assembled on= grid
point at a time, by columns, in internal sequencing ordev. At this

point the global stiffness matrix was complete.

Before imposing constraints the structural problem was stated as
[Kgg) {ug) = {Py) B.1

where [K < the global stiffness matrix

88]

the global displacement matrix

{ug}

{p,}

il

g the global load matrix

In the above equations, square brackets indicate two-dimensional
arrays and twisted brackets denote column vectors.

Multipoint constraints were expressed as
[Rg) {ug} =0 B.2

vhere [Rg] was a matrix of constraint coefficients supplied by the
user. By specifying the degrees of freedom made dependent by each

constraint equation, the {ug} matrix was partitioned to

{ug} = {BE_} B.3
Um

* gmam-—
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where u, was the set of dependent degrees of freedom. The constraint

coefficient was similarly partitioned as

[R] = [RyiRy] B.4

Thus Equation B.2 was
[R] {u} + [Ry] {uy} =0 B.5

Since [Rm] was ncnsingular, a multipoint constraint matrix was defined

as
. _ -1
6] = - [Ry]l 7 [R ] B.6
so that
{up) = [Gy] {u} B.7
The structural proolem as stated in Equation B.'. was expressed
2s

o

Knn l Knm Un _ n B.8
, .
Kn£7| Ko b o

where the superscript T indicated a matrix transpose.
By adding the equations of constraint to the above equations of
equilibrium, the result in partitioned form was

]
nn  nm °m Up Pn
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where {qm] was the vector of constraint forces on {u,}, and [I]

denoted the identity matrix. Upon eliminating w, and q, the result

was
riﬁn] {ug} = {;ﬁ} B.10 &
where
= ‘- T T
Kon = Kon' SomCotonKnntCnKmmCn B.11
and
P =P, + Gy P B.12
n n m m .

As described earlier, single-point constraints were applied to

the set of displacements ug in the form
{us} = {Ys} B.13

where {Ys] was the enforced displacement vector, any or all of whose

members could be zero. Therefore {u,;} was further partitioned as

uf
{uy} = {—-} B.14

Ug

where {Uf} was the free or unconstrained vector. The stiffness

matrix [E%n] similarly became
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The complete structural equations including the single-point

forces of constraint g  becare

Kez  Kgg  -I| Jugy = {Pg B.16
0 1 0 qq Y

A straightforward elimination gave
[Keg) {ug} = {Pei - [Keg 1 {yg} = {Ff} B.17

Solution of Equation B.16, as with all other equations of the form
[A] {X} = {B}, was accomplished using triangular decompos‘tion.
Hdo matrix inversions were performed in NASTRAN.

The solution procedure of Figure B.2 chus progressed to the point
of generating and transforrang the load vectors. The global load
vector {Pg} was partitioned according to the multipoint constrained
coordinates uy ard the coordinates up which were not multipoint
constrained, or,

?

(g} = (1} B.18

P

Multipoint constraints were eliminated by
(B} = {Po} + [GX] .~ B.19
n n md L -~ .

{?;} was further partitioned according to the single-point constrained

set ug and the free coordinate set ug as

— P
{py} = {..f_.}

Pg

- ——
" . S P W —

. gu——
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whereupon the single~point constraints were 2liminated by
Y =15 1. T .
{P )} = {5}k [6) (P} 8.21

Solution of Equation B.17 ailowed recovery of the incdependent
displacements u, in the following manner. The single-point constraint

set u, was evalnated as
{ug} = {¥g} B.22

where Y. was the enforced displacerent vector. The free and

constrained displacements, ug and u,, were then merged to form

Ug
{;;‘} + {u }

where the arrow designated the merging process.
The last step in the problem flow of Figure B.2 was performed by

recovering the multipoint constraint set u_,

{ugpd = [6) {u,} B.23
and by merging u and u to form the global displacement matrix

un
(o}~ {ug} B.24

Um

A simple task to recover the single-point forces of constraint was

accomplished using the second row of Equation B.16, or,

{ag) = —{P .} + [Kgl) {ug} + [Kgg] {ug) L.25
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Having the gl 1 displacement matrix, the solution procedure was

completed by calculating fhe internal forces and stresses in the
conventional manner. This information was then output in appropriate
form. For example, typical bar element output included bending 1

moments at both ends in two planes, transverse shear forces in two

planes, axial force, and torque.
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APPENDIX C
LEAST-SQUARES SPHERICAL FIT COMPUTER PROGRAM
C.1 GENERAL '
The computer program described in thils section ras developed to ?

reduce the data from the test series described in Chapter 3. The

functir> of the program was to perform a least—squares fit of a

spherical surface to the test data, and it will be described in four

parts. The theory of the fitting technique is developed first.
Operation of the mairline program is then described, followed by that
of the two program subroutines. The final portion of this appendix
describes typical input and output formats and includes variable
definitions and a program listing.

C.2 THEORY OF THE LEAST-SQUARES FIT

The objective of the following theoretical developmznt was
to determine a theoretical spherical surface which provided the best
"least-squares" fit to a set of radial measurements on a test model
of a spherical reticulated dome. The geometry of the problem is
given in Figure C.1l. In this figure, point J represents the origin
of the coordinate system and physically was the center of the
spherical pivot of the Easterby apparatus described in part 3.3.2.
Experimentai vaiues of the radial measurements taken during the
tests are denoted by Ry. The subscript refers to gage point P; on
the test model, which was located at (Xi, Y5, Zi) relative to the

origin.
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Point K denotes the center of the theoretical spherizal surface
. and is located at the coordinates (Xo, Yo, Z5). The radius of this
surface is glven by the quantity r,. It is assumed that points J and §

K are sufficiently close together that the angics ¢4 and 6; required

to locate each gage point can be satisfactorily computed from Ry and
the arc distances measured on the surface of the shell. The quantity
ri represents the distance from the theoretical sphere center at

point K to gage point P; on the test model, and can be expressed

mathematically in rectangular coordinates as:
ri? = & - X2+ (¥ - Y2 + (24 - 22 c.1

Transforming to spherical coordinates, the foliowing apply:

%3

Ry sin 44 cos 84 RiAi

Y; = Ry sin ¢i sin 684 = RiBi c.2

Ry cos ¢5 = Rici

Substituting expressions C.2 into Equation C.1 aud simpiifying gives

1/2

ry = [Ry2-2R (X Ap+Y B4+Z ,C; )+ 2+Y 242 2] c.3

Assume that N experimental values of Ry, ¢4, and 65 were given
along with the above expression r; relating these values to the
tneoretical sphere center. It was desired to determine the radius
r, and the center coordinates Xgs Yoo Zo of a theoretical spherical

. surface which provided the best least-squares fit to the experimental

data values, Ri' In mathematical terms, it was required to determine

the minimum value of a function defined as
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N 'y
S=1 (r,-ry) C.4
i=1
Thus S represents the sum of the squares of the differenc:s between
the radius of the best-fit sphere and the radial distances to the
shell.
In order to minimize S, (a function of the four unknowns Tos
Xos Yo, Zo) the first partial derivative of S with respect to each

unknown was set equal to zero. Solving the first such equation for

3s/or, gave

N t 2 N '
3 = 8 | L (rorgd | = T 2 ldr-ry)
ar, ar, [i=1 1=1 3T_

N '

' ] ' N
= I 2(r.-r). (r~r;) =% 2 (r-r;) =20
g=p 0 17T e it o, T Ve

Therefore,

r = i=]1 C.5

N '
-3 2(r0~ri). 3 ry

- 1=1 3X,,

Qi
<l
1
H
I =
—
Q"
xlw
o]
P
la]
o]
]
H
'J. -
L
l ™N I
n

N 1 1 -1
= -2 ¥ (rg-ry). E.(ri) (-2R1A1+2Xo) =0

d
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The two remaining partials were similar to the preceding operation

and are summzrized as

C: )
>~ (Y_-R;B;) = 0 c.7
i=1 T4 °
N (ro—ri)
L (24-R;Cq) = 0 c.8
1=1 T

Thus the Equations C.5 through C.8 represent four simultaneous
nonlinear equations in r,, X,, Yo, and Z,. When solved they yield
the radius and center coordinates of the thecretical "best-fit"
spherical surface to the experimental data points.

Solution of these eqﬁations was accomplished using an iterative
linear extrapolation technique. Essentially it consisted of making
a small change in each variable, computing the change in the four
sutmations, and projecting alcag the slope of each variation to the
desired solution. For example the solution of Equation C.6 is

diagrammed in Figure C.2. The summation in C.6 was computed for two

}

A.6 SUMMATION

Dl B p—

3INL >
xo

Figure C.2 Solutior of Equation C.6

- a——
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trial values of X, as indicated by points 1 ana 2. The slope of a
line through the rxe,ultiznz ovdinates projected through point 3, which
was the desired solution for Xo if the summation varied linearly with
X,- Experience indicated that the variation of the equations was
very nearly linear, which allowed setting confident convergence limits
on the summations. A bound of +.000025 inches was established for

each of the four unknowns.

C.3 MAINLINE PROGRAM

The mainline program is presented in .be flow chrart of Figuze C.3.
Only the main operations are included thereon with a complete print-
out of the program given on pages 211 tarough 213.

Tka first step was to read loop indices and first estimates

for the unknowns Xo, Y 2,5 and for convergence limits on the

)
summations of Equations C.5 through C.8. Angular locations ¢j and 64
(the original design values were used) for each gage point were then
read and the coordinate transformation constants Ay, Bj, and Cj were
computed. The gage points to be used in the spherical fit were also
read.

At this point a loop begar: in which data for all pressure
levels of interest was reduced. First a pass was made to subroutine
REDUCE for calculation of the experimental radii Ry. A call was
made to subroutine ITER to perform the fit of a spherical surface to

1
the experimental data. Radial distances ry from the theoretical

sphere center to each gage point w re then calculated, Initial

imperfections were determined by subtracting the radius r, for the

e




START

READ LOOP INDICES AND FIRST
ESTIMATES OF Xo, Yo, Zo

READ DATA POINT LOCATIONS ¢;, 6

-

COMPUTE Aj, By, Ci

READ GAGE POINT NUMBERS TO BE
USED IN SPHERICAL FIT

CALL REDUCE TO CHANGE DCDT

READINGS TO EXPERIMENTAL RADII K=1, KK
CALL ITER TO PERFORM SPHERICAL FIT
_ i
COMPUTE ri FOR ALL GAGE POINTS I=1,J3]
]
COMPUTE AND PRINT INITIAL IMPERFECTIONS
1
COMPUTE AND PRINT DEFLECTIONS I=1,J]
I ]
l
END

Figure C.3 Mainline Program Flow Chart
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best~-fit sphere from the r; values. The loop was completed with the

1
storage of ry values in an array for later manipulation.

Deflections (due to load) at the ith gage point between any two

pressure levels 1 and 2 were found using the following expression:

- am—e

vy = (), = (1)1 + [@)y = (2] cos ¢4 c.9

C.4 SUBROUTINES

C.4.1 Subroutine REDUCE. The function of this subroutine

was to change the voltmeter readings of the DCDT device of part 3.3.3,
to values of experimental radii R;. Its operation is diagrammed in
the flow chart of Figure C.4. A print-out is given on page 214,

A description of several radial arm dimensions is made here
with the aid of Figure C.5. This figure is a schematic of the radial
arm assembly in which the distance S; was the measured distance from
the spherical pivot of the Easterby apparatus to the flat portion of
the radial amm tip when the voltmeter reading was identically zero.
The dimension S, was the measured distance from the flat portion of
the tip when this tip was properly seated, to the middle surface of
the test shell model.

The subroutine commenced with the reading of the test model
designation, the constants S; and S, and the pressure level. For
each gage point the two largest voltmeter readings were selected and
averaged, since the farthest travel represented proper seating of the ;
spring-loaded DCDT tip. This average, rather than the largest - .

measurenment only, was taken to avoid a gross error in reading a single
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) START
. i
READ CONSTANTS AND PRESSURE s
READ GAGE POINT NUMBER AND
7 THREE DCDT READINGS
* CECOSE TWO LARGEST READINGS I=1,J]

CHECK READINGS FOR CONSISTENCY

? . ADJUST FOR CHANGE IN GLO READING IF NECESSARY

;o COMPUTE EXPERIMENTAL RADII Ry

——

RETURN

TR

h. l Figure C.4 Subroutine REDUCE Flow Chart
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large data value. Such an error would have heen detected when
checking the two readings against their average, and if a deviation
larger than + .0001 inches were noted a warning message was printed. ;

The experimental radius was then computed by the following expression:

Ri=sl+SZ+VR'AR Cc.10

In this equation, VR is the average voltmeter reading converted to
inches and AR represents the drift in the recording apparatus as
reflected by a change in the reading of the GLO gage point. The

ralibration factor for the DCDT device was 25 volts per inch.

C.4.2 Subroutine ITER. This subroutine performed a least-

flow chart of this routine is presented in Figure C.6 and a print-

out can be found on pages 215 through 217. Note that the program

. version documented herein was executed on a machine having sixty-bit
words. The user is cautloned that if low-bit machines are used, the
t
following variables should be designated as double precision: 1y,

3
squares fit of a spherical surface to the experimental radii Ry. A
r,, and the sumaticns of Equations C.5 through C.8.

t
Upon entry to subroutine ITER, r; and the summations of Equations

C.6 through C.8 were computed based on initial estimates of X, , Y,,

Increments were then added to Xo’ Y , and Z, prior to entering the

0
main iteration loop of the routine. This loop established a second
solution set to Equations C.5 through C.8. As illustrated in Figure
C.2 for the solution for Equation C.6, the iterative solution technique

extrapolated linearly a solution for X,, Y,, and Z, at the point where

; ‘ and Z,. The quantity r  was computed directly from Equation C.5.
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| START | ‘

INITIALIZE SUMMATIONS IR
EQUATIONS A.5 THROUGH A.8

>
!
<

1
COMPUTE 13, r, I=1,II

- -

COMPUTE SUMMATIONS IN l
EQUATIONS A.6 THROUGH A.8 I=1,1I

INCREMENT X , Yo, Z :

INITIALIZE SUMMATIONS IN E
EQUATIONS A.5 THROUGH A.8

o

1
[-COMPUTE ry, I=1,11

COMPUTE SUMMATIONS IN ]
EQUATIONS A.5 THROUGH A.8 I=1,1I
j

COMPUTE BOUNDS ON SUMMATIONS
(FIRST ITERATION ONLY)

ARE SUMS = 0
IMULTANEQOUSLY?

A .
INCREMENT ., X,, Yo, Z,
YES USING EXTRAPOLATION
TECHNIQUE
» RETURN

| Figure C.6 Subroutine ITER Flow Chart
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the respective summations were zero. Luring this first projection,
the convergence limits for the summations were computed based on a
bound of + .000025 inches for each of the four unknowns. If the
convergence criteria were not met, Xo, Yo, and Z, were incremented
based on the linear extrapolation and the loop was repeated uatil
convergence occurred. Normally convergence was attained within five
to seven iteratiomns.

C.5 PROGRAM INPUT AND OUTPUT

C.5.1 1Input Data. The input data required by the program is

shown on page 218. Six card types are used aud are described below.
The basic units used are pounds anc¢ inches.
Card type 1 contains four variables. One card is required. The
variables are: KK, II, JJ and JP.
FORMAT: (20(1X,I3))
KK — The number of data sets (one per pressure level) to be fitted.
II —- The total number of gage points on the test model.
JJ — The number of gage points to be used in the least-squares fit.
JP —- The number of pressure pairs to be compared through deflection
calculations.
Card type 2 contains 10 variables spread over two cards. They
are X0, YO, 20, DX0, DYO, DZ0, ESX, ESY, ESZ, and ERROR.

FORMAT: (1X,7F10.6)

X0, Y0, Z0 — Initial guess at location of theoretical sphkere center K

with respect to the origin J in Figure C.1.

DX0, DYO, DZ0 — First trial increments in X0, Y0, and Z0, respectively.

'
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ESX, EST, ESZ —- Convergence limits on the summations of Equations
C.6 through C.8.
ERROR — The desired accuracy on X0, YO, and ZO.

Card type 3 contains z*JP variables, 20 variables per card.

They are IP1(K) and :iP2(K).
FORMAT: (20(1X,13))
IP1(K) -- Data set number (in order read in) of the Jower of two
pressure levels to be compared.
IP2(K) ~- Data set number of the higher of two pressure levels to be
compared.
Card type 4 contains 2*JJ variables, six variables per card. They
are PHD(I) and THD(I).
FORMAT: (3(4X,2F8.2,6X))

PHD(I) -- The meridional angle irom the Z-axis in Figure C.1 locating

each gage point {angle in degrees)
THD(I) ~- The circumferential angle from the X-axis in Figure C.1
locating each gage point (angle in degrees).
Card type 5 contains II variables, twenty per card. They are
IX(J).
FORMAT: (20(1X,13))
IX(J) -- The gage points to be used in the least-squares fit.
Card type 6 contains four variables. One card is required. They
are MODEL, S1, S2, and PR(N). .
FORMAT: (1X,A4,7X,3(4X,F10.0))
MODEL ~— An alphameric character designating the test model.

S§1,52 — Radial arm dimensions defined in Figure C.5.
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PR(N) — The pressure level to which tbe following data applies.

Card type 7 contains six variables, four of which are read.
A total of JJ cards are required plus one card per GLO measurement.
The four pertiment variables are K, (RD(J), J = 1,3}.

FORMAT: (18X,13,4X,F6.0,2(7X,F6.0))
K —- The gage point number.
RD(J) -- DCDT output voltage (in volts) as transcribed to cards

through the key punch of part 3.5.

C.5.2 Typical Program Output. In addition to echo-printing

the input data, the program output consisted of three general types
of output. This output is shown in its printed form on pages 219
to 221,

Qutput type 1 was printed from subioutine ITER and monitored

the least-squares iteration scheme. The quantities printed at
every cycle in order from left to right were: R0,X0,Y0,Z0,
followed by the summations of Equations C.6 through C.8, respectively,
and a cycle couater ICNT.
FORMAT: (7(2.,F13.6),16)

OQutput type 2 presents the results of the data reduction for

both original and final data. The quantities printed are in order:
gage point number i, experimental radius Ri, theoretical radius r;,
and the difference between the theoretical radius r; and the radius
r, of the theoretical best-fit sphere, The latter quantity, entitled
DIFF on the printout, represented the initial imperfections in the

shell.

FORMAT (3(1X,13,2X,F8.4,2X,F8.4,2X,F7.4,7X)

B o
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Qutput tyse 3 gives values of the gage point deflections

between pressure lzvels. The quantities printed are gage point

number i, followed by its deflection DEF;.

FORMAT: (8(4X,14,F7.4)




ACI)
B(I)
s
D(I)
DEF (1)
DIFF(I)

DX0
0Yo
0Z0
E(I)
ERROR
ESX
ESY
ESZ
F(I)
I
IP1(K)

IP2 ()

IXed
J

JJ

JP

K

KK

L

M
MODEL
N

PHD (1)
PHI(T)
PI
PRIN}
R(I)

RF (M, 1)
RIP(I)
RO

S(I)
THO (I)
THEA(T)
X0
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DEFINITION OF VARIA3LES IN THZ MAINLINZ PROGRAN

SIN(PHI) * COS(THE)

SIN(PHI) * SIN(THE)

COS (PHI)

TZHMPORARY STORAGc LOCATION FGR YARIAdLt A{I)
DEFLICTION AT GAGE POILT I 3&THIeHN THO PRISSURE Lo VILS
DIFFZREINCZ BITWEEN RADIUS KO OF BIST-FIT SPHzRcC ANV
RADIUS RIP FROM ITS CEZHTZR TO GAGZ POINT I.
INCREMINT IN XO

INCRZMZNT IN YO

INCPZMINT IN 20

TZMPORARY STORAGE LOCATIOH FOR VARIA3LE B(I)
ALLOWA3LZ VARIANCE IN X0,70, AKD Z0

ALLCHABLZ VARIANCc IN tQUATION A,o SUAMATIGN
ALLOWASLZ VARIANCEZ IN EQUATION A.7 SUMNATION
ALLONXABLZ VARIATION IN £QUATION A.8 SUMMATICN
TIMPORARY STORAGZ LOCATION FIR VARIABLe C(I)

LOOP INDzX

LOWZR OF TWO SETS OF PRISSUXL LZVzl JATA BEING
COMPARZD

UPPZR OF TWO SETS OF PRZSSURE Lz=VEL DATA BEING
COMPARZD

GAGE PJINT NUMBERS TO BEZ USzZD IN LtAST-SQUARES FiT.
LOOP INDZX

TIOTAL VUM3ER OF GAGE PCINTS 0! A 7T=ST MOOel

NUMBEZR OF PRZSSURE LEVEL CCMPARISONS TO BZ “AD:
LOOF INDzX

NUMBZR OF PRZISSURZ LeVEL DATA SETS TO Bz RECUCED
TEMPORARY STORAGE LOCATION FOR VARIASLe IP1(K)
TIMPORARY STORAGZ LOCATION FCR VALRIASLE IP2(K)
ALPHAMZIRIC DOZSIGHATION OF TZST MOOclL

LOOP INDZX

MIRIDIONAL LOCATIONM OF GAGE POINT I IN UEGReZS

PHD CONVIRTED TO RADIANS

3016159265

PRZSSURZ LEvzl BZING ANALYZZIN

EX?ZRIMINTAL RADIUS TO GAGE POINT I MZIASURzD FROM
SPHERICAL PIVOT CENTER GH cASTZR8Y APPARATUS
TEMPORARY STORAGE LOCATION FCR RIP(I) YALUeS,
RADIUS TO GAGZ POINT I FROM CeNTER OF BEST FIT SPHERZ
RADIUS JF 3ZST=-FIT SPHERZ

TZIMPORARY STIRAGZ LOCATION FOR VARIA3LZ R(I)
CIRCUMFZRENTIAL LOCATION OF GAGZI PCINT I IN DcGRZ=S
THO(I) IN RADIANS

X=DISTANCZ BITWEzZN CENTZIR 0F SPHIRICAL PIVOT OHN
EASTZR3Y APPARATUS AND THI CINTIR CF THE BuST-FIT
SPHERE
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YO = Y-BISTANCC BITHEEHN CZNTLR OF SPHIRICAL PIYUT On I
EASTZIRBY APPARATUS AND THI CENTIR GF THS 22ST-FIT
SPHERE
20 = Z-J1STANCZ 8ITHEEN CINTZR OF SPHERICAL PIVuT ON
EASTIRBY APPARATUS AND THZ CcHTER CF THE UeST-FIT
SPHERE
TZMPFORARY STORAGZ LOCATIONS FOR THE VARIABLS 20

20D (N)

PROGRAM SHELL (INPUT,0UTPUT,TAPES=INPUTTAP-0=0UTPUT) . :
COMMCN /ZIT/ A(32%)4,8L3CG)sC{3CI)I4R(3IG)I,RIP(303),11
JIMENSION RF(13+330)4DEF(3GL) 4PRI13)4Z20D(L3)4PHI(3ZI)HZTHZ(3)L ),
¥ IpP1(L1nCiyIP2(4C0) ;
DIMENSION PHD (30G) yTHD(3C09) yDIFF{3CZ) sIX(3.I),D(33.), ;
¥ B30 4F{300)4S(3506)
FOPMAT (22(1X,13)) f
FIRMAT (8(4XyIusFT7al)y/) :
FORMAT (L (1X4I341X4F8e391XyF8c357X)/)
FORMAT (¥1¥)
SORMAT (1X4*¥ THIS IS THE *,A4 4+ MODEL. THZ PRESGURZ I3 *,Foecs
1% PSI*, /7))
FORMAT (L({1X,* PT PHI THETA *#47X)/7)
FORMAT (1X4/)
FORMAT (LX410(1X,F6s24% PSI¥*))
FORMAT(3{1XgI392XsFBelsZXaFlalsg2XyFTalts7X)y/)
FORMAT ( 3(¥ PT R DATA R FINAL DIFF*438X)4//)
FORMAT (1X47F18,6)
FORMAT (34X, 2F842490X))
21 = 3,14159255
ARITE (644)
RELD (5,1) KKeIIqaJJyJP
ARITE(S41) KKyIIyaJJsJP
RELD (5415) X04Y09Z0y0X0s0YC4DZO9ESXyESYsZ3ZHERROR
ARITZ (£4915) X09Y0,Z20,0X0430Y0407Z3925X925Y45S242RK0R
RIED (541) (IPLIK) 4IP2(K) K=14yJP)
;‘ ARITZ (5,1) (IP1(K)},IPZ2(K), K=1,JP)
READ( £,423) (PHOC(I) THO(I),I=1,J4)
ARITZ (Es4)
! HRITE (6456)
ARITE (593)(I4?HD(I)4THD(I) yI=14JJ)
20 103 I=1,JJ
2HIA(I) PHD(I)*P1/18% .,

(VL I ol FA B AU S

[CERRNT RS VA Re L N I o I

N

THEU(I) = THO(I) * PI/18G.,
J(I) = SIN(PHI(I)) * COSA(THE(I))
} Z(I) = SIN(PHI(I)) * SIN(TRE(I))
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: : |
F(I} = COCS(PHI{I))
WRITZ (5441}
READ (541} (IX(J)sJ=1i,1I)
JI 21 Jd=1,11 .
I = IX{J) H
HRITZ (Bsi) JsI
ACI)=D(I)
3(JI=E(I) i
SWJI=FLI) s
00 33 N = 1,KK
CALL REDUCE (PRyMODEL,yJJsN)
JO 19 1=14JJ
S(I)=R(1)
80 2C J = 1,II
I=IX(N

3 R{JI=S(I}

HR1ITE (644)

ARITEZ (£45) H“0ODcL+PRI(N)

SALL ITER (RO+XJsY0,Z040X09DYGsDZ0yESXESY»ESZHERROR)

ZIDINI=ZD

S0 23 I=11JJ

RIP{I)=SQRT(S(I)*¥2=2, ¥S(L)*F(XO*D(I)+ YO*Z(I) + ZO¥F(I)) + XJI*¥: +

ZYO*®¥2 + Z0%¥2)

ARITE (644)

WRITE (645) MODEL,PRIN)
03 3€ I=1,JJ

DIFF(I) = RI®(I} - RO
WRITE (6544C)

00 32 I=1,JJ

RE (HyI) = RIPI(I)

ARITE (649) (I4S(I)yRF(NsI) DIFF(I)yI=540J}

JO 35 K=1,J°

L=IP1i(K)

¥=IP2 (K)

D0 3& I=1,4JJ

JEF(I) = RF(M,I) = RF{LyI) + (Z03(H)=-Z0G(L))I*COS(PHI(I))
HRITE (6:4)

ARITE (548) PR(L)yPK (M)

WRITE (647)

ARITE (542) (IL4DZF(I)yI=14JdJ)
IND
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DSFINITICN OF AODITIONAL VAFIABLIS IN SUBROUTIN- REDUCE i
BAD = DIFFEZRENCE SCTHEEN THO LARGIST OCGDT RIADINGS :
DELR = QRIFT IN GLO READINGS
KI = FLAG FOR FIRST GLJ RSALING . ;
OLDR = OL) GLD RADIUS P
RD = OCDT REAGING :
SUM = SUM OF THO LARGEST OCOT RZADINGS |
Si = DISTANCE DEFINED IN FIGURE A5 .
s2 = DISTANSZ DZFINED IN FIGURE a.5
XEWR = NEW GLO RADIUS
SUBRIUTINZ REDJICE (PRyMODEL s JJyN)
COMMON /IT/ A(335)48(326),C(3353),R(320),RIP(3G6),11
DIMEMSIGN RO(3),PR(13)
2 FORMAT (1XqAbLy7Xe3(6XyFLCed))
3 FORMAT (18XeI344XyFb6e0s7XsFEals7XsFbB0l)
4 TCRMAT (¥4%}
S FORMAT(1%,% THIS IS THE *,A%4 , *40DEL., THE PRESSURE IS *,Fbecs

i¥ FSI*,//77)
7 FORMAT (1X9I342XsF10e241Xy *TEN-THOUSANDTHS OF AN INCH=-w==<3Ad K.
1A0ING*,/) .
READ ( 5,42) MODclLy S14S24PE(N)
WRITE (Ey4)
ARITE (645) MODEL 4PR(N)
I =1 s DELR = (.
JO 95 I=1,JJ
17 RZAD ( 543) Ky (RDUJ)9J=1,43) '
HRITE(593) Ky (RD(J)9J=1,3)
SJM = RI(LI+RI(2)+RO(3)I-AMINL(RD (1) yRD(2)4RD(3)}
R{K) = SUM/50]00., - DELR + S£1 + 32
BAD = 2,%ABS (AMAXi (RD(1),4R0(2),R0(3)) = SUM/2.) / 245
IF (BAUDsGTe+24) HRITE (647) K43RD
9. IF (K=~2€C) 95,491,495
L IF (KI) 62,492,983
92 JLOR = R(K)

XI = 1
30 TJ3 &2
93 XSHP = RIK)
JILR = XEWR = JLDOR + 0OcLR
OLDR = XEHWR
33 T3 1€
95 SONTINUE
RZTURN
ENC
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DEFINITION OF ADDITIONAL VAKIABLZS IN SUBROUTIN. IT=R [
y FACT = SIMPLIFICATION FACTOR IN ZOJATIONHS A5 THRCUGH A.8
AND EQUAL TO (RO-RIP(I))/RIP(I)
« FSUMX = STORAG:Z LOCATION FOR SUM OF cGUATINH aA.0 ;
FSu MY = STORAGZ LCCATION FOR SU#M OF z3LATITH A.7
FSUMZ = STORAGZ LOCATION FOR SUM OF ZQUATIOH 2.8 )
ICNT = COUNTER ON NUMBER OF ITSRATIOKRS FOR CONVERGENCE OF ‘
SILUTIIN \
KX = CONVZRGIHNCZ INDICATOR = 1 UPON COMVER3ENCZ CF ALL cQUATIUNHS
LX = INDICATIOR TO BYPASS ERROR 30Ui) SALCJYLATIONS =XJcPT
ON FIRST PASS
RA TRIAL VALJEZ FOR RO
StX SLOPZ OF SUMX VERSUS XC Curv:z
SLY SLOFPZ JF SUMY VERSUS YC CURJE
SLZ SLOPE OF SUMZ VERSUS ZC CURVE
SUMX NEW SUMMATION OF ZGUATION A.0
SUMX1 PRZVIOUS SUMMATION OF LEQUATICN A.d
SUMY NIW SUMMATION OF EQUATION A.7
SUMY1 PREVIOUS SUMMATION OF ELQUATION Al7

NZH SUMMATION CF ZQUATION A.5

PRZVIOUS SUMMATION OF tQUATION X8
PREVIOUS VALUZ OF XO

FIXED POINT NOTATION FCOR TkZI YARIGELD IIX
PRZVIOJS VALUZ OF YO

SUMZ
SUMZ1
X01
XX
Y01
: 201 PREVIOUS VALUZ OF Z0
. SUBRIUTINE ITER €ROy X04Y0y720404G,0Y0sCZ0-CSX¢LSY 932 52R0K)

LS I L T {1 I O T 1 B 1 A

SOMMON /IT/ A(333),8(32L),C(33d)4R(3IC)RiIP(3GuIIT
2 FORMAT (7(2X4F13.6),16 }
3 ORMAT (*1¥,1X, ¥Z0-COUNT = *,1I3)
0 TORMAT (1X9¥RD = ¥ FBeby7Xy*¥XD = ¥,F7 44 98X9*(0 = *,F7ou498X9*20 = *

/ 19F7.448Xy¥COUNT = *4134/)
: LX = 1 &) KX = 1 3 XX = II
o ICNT =€ ¢ RO =35, 3 SUMZL = 5e 3 SIMXL =<, & SUMYL = (.
201 = 20 5 X01 = X0 $ YCL = YO
JO 5 I=1,I1I

RIP(I)=SCRT(R(I)**¥2=2, ¥R(I)*(XC*¥A(I)+ YO*¥3(I) + ZO*C(I)) + XI¥*2 +
1YQ**2 + 70%**2)
5 R0 = RI + RIP(I)/XX
00 1 I = 1,11
TACT = (RO=RIP(I)s/RIP (L.
SUEX1 = SUMX1 + FACT * (.'O-k(I)*Ail))
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SUMYL = SUMYL & FACT * (YO-R(I}¥B(I))
12 SUHZL = SUMZ1 + FACT * (ZG-R(I)*C(I}}
ISNT = 1CNT + 1
FSUMZ = SUMI:
TSUMX = SUMX1 .
SuMY = SUMY: |
RA =
ARITE (5521 RAyX0.Y0yZ0,FSUFXyFSUNYsFSUVZsICNT
IF (SUMZidi+sli,15 {
14 Z0 = 20 - 029
50 10 45
15 20 = 28 + 0I0
465 IF (SUMXL) &%k ,45
4u X0 = X0 - DXO
39 TO 75
45 X0 = X0 + X9
75 IF (SUMY1)T4,74473
74 YC = YC - DYO

o

LU | I 1

~
(%]

30 T0 to

75 YO = Y0 + DYC

15 X0 = O,
SUKZ = Go b SUMX = G d SUMY = L+
KX = 1

33 38 I=1sII
RIP{I)=SCRATI(R(II*¥2~2. ¥R{I)* (XO*A(I)+ YC¥3(I) + ZO¥C(I)) + XO¥¥2 +
LYJ+%Z + 20%%2)

15 RO = RO + RIFP(IiI/XX
IF (IC T = 130) 23425417

17 WRITE (8,3) ICONT .
STGP

2230 22 1 = 1,11
TACT = (RO=RIP(IN)/RIP(I)

SUNX = SUMX + FACT * (XO=-R(I)*A(I))

SUMY = SUMY + FACT * (YO-R(I)*3(I))
22 SUMZ = SUMZ + FACT * (Z0=-R(I)*C¢I))

FSUMZ = SUNZ

FSUMX = SUMX

FSUMY = SUNY

R =

(o]
o

ICNT = ICNT + 1
WRITE (€+2) RA¢%0,Y0yZ0yFSUNXyFSUMY yFSUFZ,ICNT
IF (Z0-221) 24423424

24 SLZ = (SUMZ =~ SUMZ1) s (20 - Z01)

23 IF (X0=XJ1) 54933454

54 SLX = (SUMX = SUMX1) / (X0 = XO01)
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27
28

er

58

87
38

25
2%

IF {YD~-YD21i] 844+834+34

SLY = (StMy - SUMY1) / (YO - YO1)
33 1o (29,27) 4LX

ZS7Z = AB5(SLZ)*ERRIR

23X = A3S{SLX}*ZRROR

ZSY = ABSI(SLY)*ZRROR

LY = 2

IF (AB3(FSUMZ)-ESZ 157s57,28

{X = 2

261 = Z0

SUtiZ1 = SUMZ

20 = 70 - SUMZ/SLZ

IF (LBS(FSUNX)~ESX Y87487,4E2
£X = 2

£J1 = X3

SUNKL = SUMX

XJ = X3 - SUMX/SLX

IF (LBS(FSUMY!-CSY )26+26468
<X = 2
Yo1 = YO

SJhYL = SUMY

YO = YO - SUMY/ZSLY
53 T3 {29,155}y KX
ARITE (G156) RA$X0sYODs20,ICNT
RETURN
cNi
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